{mayi_des}
Networks of atom-centered coordination octahedra commonly occur in inorganic and hybrid solid-state materials. Characterizing their spatial arrangements and characteristics is crucial for relating structures to properties for many materials families. The traditional method using case-by-case inspection becomes prohibitive for discovering trends and similarities in large datasets. Here, we operationalize chemical intuition to automate the geometric parsing, quantification, and classification of coordination octahedral networks. We find axis-resolved tilting trends in ABO$_{3}$ perovskite polymorphs, which assist in detecting oxidation state changes. Moreover, we develop a scale-invariant encoding scheme to represent these networks, which, combined with human-assisted unsupervised machine learning, allows us to taxonomize the inorganic framework polytypes in hybrid iodoplumbates (A$_x$Pb$_y$I$_z$). Consequently, we uncover a violation of Pauling's third rule and the design principles underpinning their topological diversity. Our results offer a glimpse into the vast design space of atomic octahedral networks and inform high-throughput, targeted screening of specific structure types.
It is a challenge to numerically solve nonlinear partial differential equations whose solution involves discontinuity. In the context of numerical simulators for multi-phase flow in porous media, there exists a long-standing issue known as Grid Orientation Effect (GOE), wherein different numerical solutions can be obtained when considering grids with different orientations under certain unfavorable conditions. Our perspective is that GOE arises due to numerical instability near displacement fronts, where spurious oscillations accompanied by sharp fronts, if not adequately suppressed, lead to GOE. To reduce or even eliminate GOE, we propose augmenting adaptive artificial viscosity when solving the saturation equation. It has been demonstrated that appropriate artificial viscosity can effectively reduce or even eliminate GOE. The proposed numerical method can be easily applied in practical engineering problems.
Global Climate Model (GCM) tuning (calibration) is a tedious and time-consuming process, with high-dimensional input and output fields. Experts typically tune by iteratively running climate simulations with hand-picked values of tuning parameters. Many, in both the statistical and climate literature, have proposed alternative calibration methods, but most are impractical or difficult to implement. We present a practical, robust and rigorous calibration approach on the atmosphere-only model of the Department of Energy's Energy Exascale Earth System Model (E3SM) version 2. Our approach can be summarized into two main parts: (1) the training of a surrogate that predicts E3SM output in a fraction of the time compared to running E3SM, and (2) gradient-based parameter optimization. To train the surrogate, we generate a set of designed ensemble runs that span our input parameter space and use polynomial chaos expansions on a reduced output space to fit the E3SM output. We use this surrogate in an optimization scheme to identify values of the input parameters for which our model best matches gridded spatial fields of climate observations. To validate our choice of parameters, we run E3SMv2 with the optimal parameter values and compare prediction results to expertly-tuned simulations across 45 different output fields. This flexible, robust, and automated approach is straightforward to implement, and we demonstrate that the resulting model output matches present day climate observations as well or better than the corresponding output from expert tuned parameter values, while considering high-dimensional output and operating in a fraction of the time.
Data sets of multivariate normal distributions abound in many scientific areas like diffusion tensor imaging, structure tensor computer vision, radar signal processing, machine learning, just to name a few. In order to process those normal data sets for downstream tasks like filtering, classification or clustering, one needs to define proper notions of dissimilarities between normals and paths joining them. The Fisher-Rao distance defined as the Riemannian geodesic distance induced by the Fisher information metric is such a principled metric distance which however is not known in closed-form excepts for a few particular cases. In this work, we first report a fast and robust method to approximate arbitrarily finely the Fisher-Rao distance between multivariate normal distributions. Second, we introduce a class of distances based on diffeomorphic embeddings of the normal manifold into a submanifold of the higher-dimensional symmetric positive-definite cone corresponding to the manifold of centered normal distributions. We show that the projective Hilbert distance on the cone yields a metric on the embedded normal submanifold and we pullback that cone distance with its associated straight line Hilbert cone geodesics to obtain a distance and smooth paths between normal distributions. Compared to the Fisher-Rao distance approximation, the pullback Hilbert cone distance is computationally light since it requires to compute only the extreme minimal and maximal eigenvalues of matrices. Finally, we show how to use those distances in clustering tasks.
This article presents a high-order accurate numerical method for the evaluation of singular volume integral operators, with attention focused on operators associated with the Poisson and Helmholtz equations in two dimensions. Following the ideas of the density interpolation method for boundary integral operators, the proposed methodology leverages Green's third identity and a local polynomial interpolant of the density function to recast the volume potential as a sum of single- and double-layer potentials and a volume integral with a regularized (bounded or smoother) integrand. The layer potentials can be accurately and efficiently evaluated everywhere in the plane by means of existing methods (e.g.\ the density interpolation method), while the regularized volume integral can be accurately evaluated by applying elementary quadrature rules. We describe the method both for domains meshed by mapped quadrilaterals and triangles, introducing for each case (i) well-conditioned methods for the production of certain requisite source polynomial interpolants and (ii) efficient translation formulae for polynomial particular solutions. Compared to straightforwardly computing corrections for every singular and nearly-singular volume target, the method significantly reduces the amount of required specialized quadrature by pushing all singular and near-singular corrections to near-singular layer-potential evaluations at target points in a small neighborhood of the domain boundary. Error estimates for the regularization and quadrature approximations are provided. The method is compatible with well-established fast algorithms, being both efficient not only in the online phase but also to set-up. Numerical examples demonstrate the high-order accuracy and efficiency of the proposed methodology.
We propose a Hermite spectral method for the inelastic Boltzmann equation, which makes two-dimensional periodic problem computation affordable by the hardware nowadays. The new algorithm is based on a Hermite expansion, where the expansion coefficients for the VHS model are reduced into several summations and can be derived exactly. Moreover, a new collision model is built with a combination of the quadratic collision operator and a linearized collision operator, which helps us to balance the computational cost and the accuracy. Various numerical experiments, including spatially two-dimensional simulations, demonstrate the accuracy and efficiency of this numerical scheme.
We propose a distributed bundle adjustment (DBA) method using the exact Levenberg-Marquardt (LM) algorithm for super large-scale datasets. Most of the existing methods partition the global map to small ones and conduct bundle adjustment in the submaps. In order to fit the parallel framework, they use approximate solutions instead of the LM algorithm. However, those methods often give sub-optimal results. Different from them, we utilize the exact LM algorithm to conduct global bundle adjustment where the formation of the reduced camera system (RCS) is actually parallelized and executed in a distributed way. To store the large RCS, we compress it with a block-based sparse matrix compression format (BSMC), which fully exploits its block feature. The BSMC format also enables the distributed storage and updating of the global RCS. The proposed method is extensively evaluated and compared with the state-of-the-art pipelines using both synthetic and real datasets. Preliminary results demonstrate the efficient memory usage and vast scalability of the proposed method compared with the baselines. For the first time, we conducted parallel bundle adjustment using LM algorithm on a real datasets with 1.18 million images and a synthetic dataset with 10 million images (about 500 times that of the state-of-the-art LM-based BA) on a distributed computing system.
This paper presents a robust numerical solution to the electromagnetic scattering problem involving multiple multi-layered cavities in both transverse magnetic and electric polarizations. A transparent boundary condition is introduced at the open aperture of the cavity to transform the problem from an unbounded domain into that of bounded cavities. By employing Fourier series expansion of the solution, we reduce the original boundary value problem to a two-point boundary value problem, represented as an ordinary differential equation for the Fourier coefficients. The analytical derivation of the connection formula for the solution enables us to construct a small-scale system that includes solely the Fourier coefficients on the aperture, streamlining the solving process. Furthermore, we propose accurate numerical quadrature formulas designed to efficiently handle the weakly singular integrals that arise in the transparent boundary conditions. To demonstrate the effectiveness and versatility of our proposed method, a series of numerical experiments are conducted.
Digital image correlation (DIC) has become a valuable tool in the evaluation of mechanical experiments, particularly fatigue crack growth experiments. The evaluation requires accurate information of the crack path and crack tip position, which is difficult to obtain due to inherent noise and artefacts. Machine learning models have been extremely successful in recognizing this relevant information. But for the training of robust models, which generalize well, big data is needed. However, data is typically scarce in the field of material science and engineering because experiments are expensive and time-consuming. We present a method to generate synthetic DIC data using generative adversarial networks with a physics-guided discriminator. To decide whether data samples are real or fake, this discriminator additionally receives the derived von Mises equivalent strain. We show that this physics-guided approach leads to improved results in terms of visual quality of samples, sliced Wasserstein distance, and geometry score.
By combining a logarithm transformation with a corrected Milstein-type method, the present article proposes an explicit, unconditional boundary and dynamics preserving scheme for the stochastic susceptible-infected-susceptible (SIS) epidemic model that takes value in (0,N). The scheme applied to the model is first proved to have a strong convergence rate of order one. Further, the dynamic behaviors are analyzed for the numerical approximations and it is shown that the scheme can unconditionally preserve both the domain and the dynamics of the model. More precisely, the proposed scheme gives numerical approximations living in the domain (0,N) and reproducing the extinction and persistence properties of the original model for any time discretization step-size h > 0, without any additional requirements on the model parameters. Numerical experiments are presented to verify our theoretical results.
This study performs an ablation analysis of Vector Quantized Generative Adversarial Networks (VQGANs), concentrating on image-to-image synthesis utilizing a single NVIDIA A100 GPU. The current work explores the nuanced effects of varying critical parameters including the number of epochs, image count, and attributes of codebook vectors and latent dimensions, specifically within the constraint of limited resources. Notably, our focus is pinpointed on the vector quantization loss, keeping other hyperparameters and loss components (GAN loss) fixed. This was done to delve into a deeper understanding of the discrete latent space, and to explore how varying its size affects the reconstruction. Though, our results do not surpass the existing benchmarks, however, our findings shed significant light on VQGAN's behaviour for a smaller dataset, particularly concerning artifacts, codebook size optimization, and comparative analysis with Principal Component Analysis (PCA). The study also uncovers the promising direction by introducing 2D positional encodings, revealing a marked reduction in artifacts and insights into balancing clarity and overfitting.