亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Evidence suggests that Free/Libre Open Source Software (FLOSS) environments provide unlimited learning opportunities. Community members engage in a number of activities both during their interaction with their peers and while making use of the tools available in these environments. A number of studies document the existence of learning processes in FLOSS through the analysis of surveys and questionnaires filled by FLOSS project participants. At the same time, the interest in understanding the dynamics of the FLOSS phenomenon, its popularity and success resulted in the development of tools and techniques for extracting and analyzing data from different FLOSS data sources. This new field is called Mining Software Repositories (MSR). In spite of these efforts, there is limited work aiming to provide empirical evidence of learning processes directly from FLOSS repositories. In this paper, we seek to trigger such an initiative by proposing an approach based on Process Mining to trace learning behaviors from FLOSS participants trails of activities, as recorded in FLOSS repositories, and visualize them as process maps. Process maps provide a pictorial representation of real behavior as it is recorded in FLOSS data. Our aim is to provide critical evidence that boosts the understanding of learning behavior in FLOSS communities by analyzing the relevant repositories. In order to accomplish this, we propose an effective approach that comprises first the mining of FLOSS repositories in order to generate Event logs, and then the generation of process maps, equipped with relevant statistical data interpreting and indicating the value of process discovery from these repos-itories

相關內容

Processing 是(shi)一門開源(yuan)編程語言和與之配套的(de)(de)集成開發環境(IDE)的(de)(de)名稱。Processing 在電(dian)子藝術和視(shi)覺(jue)設計社區被用(yong)來教授(shou)編程基礎(chu),并運用(yong)于(yu)大量的(de)(de)新媒體和互動藝術作品中。

Over the last decades, Stochastic Gradient Descent (SGD) has been intensively studied by the Machine Learning community. Despite its versatility and excellent performance, the optimization of large models via SGD still is a time-consuming task. To reduce training time, it is common to distribute the training process across multiple devices. Recently, it has been shown that the convergence of asynchronous SGD (ASGD) will always be faster than mini-batch SGD. However, despite these improvements in the theoretical bounds, most ASGD convergence-rate proofs still rely on a centralized parameter server, which is prone to become a bottleneck when scaling out the gradient computations across many distributed processes. In this paper, we present a novel convergence-rate analysis for decentralized and asynchronous SGD (DASGD) which does not require partial synchronization among nodes nor restrictive network topologies. Specifically, we provide a bound of $\mathcal{O}(\sigma\epsilon^{-2}) + \mathcal{O}(QS_{avg}\epsilon^{-3/2}) + \mathcal{O}(S_{avg}\epsilon^{-1})$ for the convergence rate of DASGD, where $S_{avg}$ is the average staleness between models, $Q$ is a constant that bounds the norm of the gradients, and $\epsilon$ is a (small) error that is allowed within the bound. Furthermore, when gradients are not bounded, we prove the convergence rate of DASGD to be $\mathcal{O}(\sigma\epsilon^{-2}) + \mathcal{O}(\sqrt{\hat{S}_{avg}\hat{S}_{max}}\epsilon^{-1})$, with $\hat{S}_{max}$ and $\hat{S}_{avg}$ representing a loose version of the average and maximum staleness, respectively. Our convergence proof holds for a fixed stepsize and any non-convex, homogeneous, and L-smooth objective function. We anticipate that our results will be of high relevance for the adoption of DASGD by a broad community of researchers and developers.

Quantitative Transmission Electron Microscopy (TEM) during in-situ straining experiment is able to reveal the motion of dislocations -- linear defects in the crystal lattice of metals. In the domain of materials science, the knowledge about the location and movement of dislocations is important for creating novel materials with superior properties. A long-standing problem, however, is to identify the position and extract the shape of dislocations, which would ultimately help to create a digital twin of such materials. In this work, we quantitatively compare state-of-the-art instance segmentation methods, including Mask R-CNN and YOLOv8. The dislocation masks as the results of the instance segmentation are converted to mathematical lines, enabling quantitative analysis of dislocation length and geometry -- important information for the domain scientist, which we then propose to include as a novel length-aware quality metric for estimating the network performance. Our segmentation pipeline shows a high accuracy suitable for all domain-specific, further post-processing. Additionally, our physics-based metric turns out to perform much more consistently than typically used pixel-wise metrics.

Large Language Models (LLMs) have revolutionized Natural Language Processing (NLP). Although convenient for research and practical applications, open-source LLMs with fewer parameters often suffer from severe hallucinations compared to their larger counterparts. This paper focuses on measuring and reducing hallucinations in BLOOM 7B, a representative of such weaker open-source LLMs that are publicly available for research and commercial applications. We introduce HaloCheck, a lightweight BlackBox knowledge-free framework designed to quantify the severity of hallucinations in LLMs. Additionally, we explore techniques like knowledge injection and teacher-student approaches to alleviate hallucinations in low-parameter LLMs. Our experiments effectively demonstrate the reduction of hallucinations in challenging domains for these LLMs.

Industry 4.0 has brought to attention the need for a connected, flexible, and autonomous production environment. The New Radio (NR)-sidelink, which was introduced by the third-generation partnership project (3GPP) in Release 16, can be particularly helpful for factories that need to facilitate cooperative and close-range communication. Automated Guided Vehicles (AGVs) are important for material handling and carriage within these environments, and using NR-sidelink communication can further enhance their performance. An efficient resource allocation mechanism is required to ensure reliable communication and avoid interference between AGVs and other wireless systems in the factory using NR-sidelink. This work evaluates the 3GPP standardized resource allocation algorithm for NR-sidelink for a use case of cooperative carrying AGVs. We suggest further improvements that are tailored to the quality of service (QoS) requirements of an indoor factory communication scenario with cooperative AGVs.The use of NR-sidelink communication has the potential to help meet the QoS requirements for different Industry 4.0 use cases. This work can be a foundation for further improvements in NR-sidelink in 3GPP Release 18 and beyond.

Thermodynamic equations of state (EOS) are essential for many industries as well as in academia. Even leaving aside the expensive and extensive measurement campaigns required for the data acquisition, the development of EOS is an intensely time-consuming process, which does often still heavily rely on expert knowledge and iterative fine-tuning. To improve upon and accelerate the EOS development process, we introduce thermodynamics-informed symbolic regression (TiSR), a symbolic regression (SR) tool aimed at thermodynamic EOS modeling. TiSR is already a capable SR tool, which was used in the research of //doi.org/10.1007/s10765-023-03197-z. It aims to combine an SR base with the extensions required to work with often strongly scattered experimental data, different residual pre- and post-processing options, and additional features required to consider thermodynamic EOS development. Although TiSR is not ready for end users yet, this paper is intended to report on its current state, showcase the progress, and discuss (distant and not so distant) future directions. TiSR is available at //github.com/scoop-group/TiSR and can be cited as //doi.org/10.5281/zenodo.8317547.

The issue of shortcut learning is widely known in NLP and has been an important research focus in recent years. Unintended correlations in the data enable models to easily solve tasks that were meant to exhibit advanced language understanding and reasoning capabilities. In this survey paper, we focus on the field of machine reading comprehension (MRC), an important task for showcasing high-level language understanding that also suffers from a range of shortcuts. We summarize the available techniques for measuring and mitigating shortcuts and conclude with suggestions for further progress in shortcut research. Importantly, we highlight two concerns for shortcut mitigation in MRC: (1) the lack of public challenge sets, a necessary component for effective and reusable evaluation, and (2) the lack of certain mitigation techniques that are prominent in other areas.

Deep neural networks (DNNs) have made great strides in pushing the state-of-the-art in several challenging domains. Recent studies reveal that they are prone to making overconfident predictions. This greatly reduces the overall trust in model predictions, especially in safety-critical applications. Early work in improving model calibration employs post-processing techniques which rely on limited parameters and require a hold-out set. Some recent train-time calibration methods, which involve all model parameters, can outperform the postprocessing methods. To this end, we propose a new train-time calibration method, which features a simple, plug-and-play auxiliary loss known as multi-class alignment of predictive mean confidence and predictive certainty (MACC). It is based on the observation that a model miscalibration is directly related to its predictive certainty, so a higher gap between the mean confidence and certainty amounts to a poor calibration both for in-distribution and out-of-distribution predictions. Armed with this insight, our proposed loss explicitly encourages a confident (or underconfident) model to also provide a low (or high) spread in the presoftmax distribution. Extensive experiments on ten challenging datasets, covering in-domain, out-domain, non-visual recognition and medical image classification scenarios, show that our method achieves state-of-the-art calibration performance for both in-domain and out-domain predictions. Our code and models will be publicly released.

Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

北京阿比特科技有限公司