亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mobile device proficiency is increasingly important for everyday living, including to deliver healthcare services. Human-device interactions represent a potential in cognitive neurology and aging research. Although traditional pen-and-paper evaluations serve as valuable tools within public health strategies for population-scale cognitive assessments, digital devices could amplify cognitive assessment. However, even person-centered studies often fail to incorporate measures of mobile device proficiency and research with digital mobile technology frequently neglects these evaluations. Besides that, cognitive screening, a fundamental part of brain health evaluation and a widely accepted strategy to identify high-risk individuals vulnerable to cognitive impairment and dementia, has research using digital devices for older adults in need for standardization. To address this shortfall, the DigiTAU collaborative and interdisciplinary project is creating refined methodological parameters for the investigation of digital biomarkers. With careful consideration of cognitive design elements, here we describe the open-source and performance-based Mobile Device Abilities Test (MDAT), a simple, low-cost, and reproductible open-sourced test framework. This result was achieved with a cross-sectional study population sample of 101 low and middle-income subjects aged 20 to 79 years old. Partial least squares structural equation modeling (PLS-SEM) was used to assess the measurement of the construct. It was possible to achieve a reliable method with internal consistency, good content validity related to digital competences, and that does not have much interference with auto-perceived global functional disability, health self-perception, and motor dexterity. Limitations for this method are discussed and paths to improve and establish better standards are highlighted.

相關內容

Cognition:Cognition:International Journal of Cognitive Science Explanation:認知:國際認知科學雜志。 Publisher:Elsevier。 SIT:

Advancements in materials play a crucial role in technological progress. However, the process of discovering and developing materials with desired properties is often impeded by substantial experimental costs, extensive resource utilization, and lengthy development periods. To address these challenges, modern approaches often employ machine learning (ML) techniques such as Bayesian Optimization (BO), which streamline the search for optimal materials by iteratively selecting experiments that are most likely to yield beneficial results. However, traditional BO methods, while beneficial, often struggle with balancing the trade-off between exploration and exploitation, leading to sub-optimal performance in material discovery processes. This paper introduces a novel Threshold-Driven UCB-EI Bayesian Optimization (TDUE-BO) method, which dynamically integrates the strengths of Upper Confidence Bound (UCB) and Expected Improvement (EI) acquisition functions to optimize the material discovery process. Unlike the classical BO, our method focuses on efficiently navigating the high-dimensional material design space (MDS). TDUE-BO begins with an exploration-focused UCB approach, ensuring a comprehensive initial sweep of the MDS. As the model gains confidence, indicated by reduced uncertainty, it transitions to the more exploitative EI method, focusing on promising areas identified earlier. The UCB-to-EI switching policy dictated guided through continuous monitoring of the model uncertainty during each step of sequential sampling results in navigating through the MDS more efficiently while ensuring rapid convergence. The effectiveness of TDUE-BO is demonstrated through its application on three different material datasets, showing significantly better approximation and optimization performance over the EI and UCB-based BO methods in terms of the RMSE scores and convergence efficiency, respectively.

Orthogonal meta-learners, such as DR-learner, R-learner and IF-learner, are increasingly used to estimate conditional average treatment effects. They improve convergence rates relative to na\"{\i}ve meta-learners (e.g., T-, S- and X-learner) through de-biasing procedures that involve applying standard learners to specifically transformed outcome data. This leads them to disregard the possibly constrained outcome space, which can be particularly problematic for dichotomous outcomes: these typically get transformed to values that are no longer constrained to the unit interval, making it difficult for standard learners to guarantee predictions within the unit interval. To address this, we construct orthogonal meta-learners for the prediction of counterfactual outcomes which respect the outcome space. As such, the obtained i-learner or imputation-learner is more generally expected to outperform existing learners, even when the outcome is unconstrained, as we confirm empirically in simulation studies and an analysis of critical care data. Our development also sheds broader light onto the construction of orthogonal learners for other estimands.

We consider a deep neural network estimator based on empirical risk minimization with l_1-regularization. We derive a general bound for its excess risk in regression and classification (including multiclass), and prove that it is adaptively nearly-minimax (up to log-factors) simultaneously across the entire range of various function classes.

The key ingredient to retrieving a signal from its Fourier magnitudes, namely, to solve the phase retrieval problem, is an effective prior on the sought signal. In this paper, we study the phase retrieval problem under the prior that the signal lies in a semi-algebraic set. This is a very general prior as semi-algebraic sets include linear models, sparse models, and ReLU neural network generative models. The latter is the main motivation of this paper, due to the remarkable success of deep generative models in a variety of imaging tasks, including phase retrieval. We prove that almost all signals in R^N can be determined from their Fourier magnitudes, up to a sign, if they lie in a (generic) semi-algebraic set of dimension N/2. The same is true for all signals if the semi-algebraic set is of dimension N/4. We also generalize these results to the problem of signal recovery from the second moment in multi-reference alignment models with multiplicity free representations of compact groups. This general result is then used to derive improved sample complexity bounds for recovering band-limited functions on the sphere from their noisy copies, each acted upon by a random element of SO(3).

In sampling-based Bayesian models of brain function, neural activities are assumed to be samples from probability distributions that the brain uses for probabilistic computation. However, a comprehensive understanding of how mechanistic models of neural dynamics can sample from arbitrary distributions is still lacking. We use tools from functional analysis and stochastic differential equations to explore the minimum architectural requirements for $\textit{recurrent}$ neural circuits to sample from complex distributions. We first consider the traditional sampling model consisting of a network of neurons whose outputs directly represent the samples (sampler-only network). We argue that synaptic current and firing-rate dynamics in the traditional model have limited capacity to sample from a complex probability distribution. We show that the firing rate dynamics of a recurrent neural circuit with a separate set of output units can sample from an arbitrary probability distribution. We call such circuits reservoir-sampler networks (RSNs). We propose an efficient training procedure based on denoising score matching that finds recurrent and output weights such that the RSN implements Langevin sampling. We empirically demonstrate our model's ability to sample from several complex data distributions using the proposed neural dynamics and discuss its applicability to developing the next generation of sampling-based brain models.

The interpretation of vaccine efficacy estimands is subtle, even in randomized trials designed to quantify immunological effects of vaccination. In this article, we introduce terminology to distinguish between different vaccine efficacy estimands and clarify their interpretations. This allows us to explicitly consider immunological and behavioural effects of vaccination, and establish that policy-relevant estimands can differ substantially from those commonly reported in vaccine trials. We further show that a conventional vaccine trial allows identification and estimation of different vaccine estimands under plausible conditions, if one additional post-treatment variable is measured. Specifically, we utilize a ``belief variable'' that indicates the treatment an individual believed they had received. The belief variable is similar to ``blinding assessment'' variables that are occasionally collected in placebo-controlled trials in other fields. We illustrate the relations between the different estimands, and their practical relevance, in numerical examples based on an influenza vaccine trial.

Large medical imaging data sets are becoming increasingly available, but ensuring sample quality without significant artefacts is challenging. Existing methods for identifying imperfections in medical imaging rely on data-intensive approaches, compounded by a scarcity of artefact-rich scans for training machine learning models in clinical research. To tackle this problem, we propose a framework with four main components: 1) artefact generators inspired by magnetic resonance physics to corrupt brain MRI scans and augment a training dataset, 2) abstract and engineered features to represent images compactly, 3) a feature selection process depending on the artefact class to improve classification, and 4) SVM classifiers to identify artefacts. Our contributions are threefold: first, physics-based artefact generators produce synthetic brain MRI scans with controlled artefacts for data augmentation. This will avoid the labour-intensive collection and labelling process of scans with rare artefacts. Second, we propose a pool of abstract and engineered image features to identify 9 different artefacts for structural MRI. Finally, we use an artefact-based feature selection block that, for each class of artefacts, finds the set of features providing the best classification performance. We performed validation experiments on a large data set of scans with artificially-generated artefacts, and in a multiple sclerosis clinical trial where real artefacts were identified by experts, showing that the proposed pipeline outperforms traditional methods. In particular, our data augmentation increases performance by up to 12.5 percentage points on accuracy, precision, and recall. The computational efficiency of our pipeline enables potential real-time deployment, promising high-throughput clinical applications through automated image-processing pipelines driven by quality control systems.

Feedforward neural networks (FNNs) are typically viewed as pure prediction algorithms, and their strong predictive performance has led to their use in many machine-learning applications. However, their flexibility comes with an interpretability trade-off; thus, FNNs have been historically less popular among statisticians. Nevertheless, classical statistical theory, such as significance testing and uncertainty quantification, is still relevant. Supplementing FNNs with methods of statistical inference, and covariate-effect visualisations, can shift the focus away from black-box prediction and make FNNs more akin to traditional statistical models. This can allow for more inferential analysis, and, hence, make FNNs more accessible within the statistical-modelling context.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司