Context - The exponential growth of data is becoming a significant concern. Managing this data has become incredibly challenging, especially when dealing with various sources in different formats and speeds. Moreover, Ensuring data quality has become increasingly crucial for effective decision-making and operational processes. Data Architecture is crucial in describing, collecting, storing, processing, and analyzing data to meet business needs. Providing an abstract view of data-intensive applications is essential to ensure that the data is transformed into valuable information. We must take these challenges seriously to ensure we can effectively manage and use the data to our advantage. Objective - To establish an architecture framework that enables a comprehensive description of the data architecture and effectively streamlines data quality monitoring. Method - The architecture framework utilizes Model Driven Engineering (MDE) techniques. Its backing of data-intensive architecture descriptions empowers with an automated generation for data quality checks. Result - The Framework offers a comprehensive solution for data-intensive applications to model their architecture efficiently and monitor the quality of their data. It automates the entire process and ensures precision and consistency in data. With DAT, architects and analysts gain access to a powerful tool that simplifies their workflow and empowers them to make informed decisions based on reliable data insights. Conclusion - We have evaluated the DAT on more than five cases within various industry domains, demonstrating its exceptional adaptability and effectiveness.
Analyzing complex and large data as generated in non-destructive testing (NDT) is a time-consuming and mentally demanding challenge. Such data is heterogeneous and integrates primary and secondary derived data from materials or material systems for spatial, spatio-temporal as well as high-dimensional data analysis. Currently, materials experts mainly rely on conventional desktop systems using standard 2D visualization techniques for this purpose. Our framework is a novel immersive visual analytics system, which supports the exploration of complex spatial structures and derived multidimensional abstract data in an augmented reality setting. It includes three novel visualization techniques: MDD-Glyphs, TimeScatter, and ChronoBins, each facilitating the interactive exploration and comparison of multidimensional distributions from multiple datasets and time steps. A qualitative evaluation conducted with materials experts and novices in a real-world case study demonstrated the benefits of the proposed visualization techniques. This evaluation also revealed that combining spatial and abstract data in an immersive environment improved their analytical capabilities and facilitated to better and faster identify patterns, anomalies, as well as changes over time.
Retrieval-Augmented Generation (RAG) demonstrates great value in alleviating outdated knowledge or hallucination by supplying LLMs with updated and relevant knowledge. However, there are still several difficulties for RAG in understanding complex multi-hop query and retrieving relevant documents, which require LLMs to perform reasoning and retrieve step by step. Inspired by human's reasoning process in which they gradually search for the required information, it is natural to ask whether the LLMs could notice the missing information in each reasoning step. In this work, we first experimentally verified the ability of LLMs to extract information as well as to know the missing. Based on the above discovery, we propose a Missing Information Guided Retrieve-Extraction-Solving paradigm (MIGRES), where we leverage the identification of missing information to generate a targeted query that steers the subsequent knowledge retrieval. Besides, we design a sentence-level re-ranking filtering approach to filter the irrelevant content out from document, along with the information extraction capability of LLMs to extract useful information from cleaned-up documents, which in turn to bolster the overall efficacy of RAG. Extensive experiments conducted on multiple public datasets reveal the superiority of the proposed MIGRES method, and analytical experiments demonstrate the effectiveness of our proposed modules.
The utilization of synthetic data for fingerprint recognition has garnered increased attention due to its potential to alleviate privacy concerns surrounding sensitive biometric data. However, current methods for generating fingerprints have limitations in creating impressions of the same finger with useful intra-class variations. To tackle this challenge, we present GenPrint, a framework to produce fingerprint images of various types while maintaining identity and offering humanly understandable control over different appearance factors such as fingerprint class, acquisition type, sensor device, and quality level. Unlike previous fingerprint generation approaches, GenPrint is not confined to replicating style characteristics from the training dataset alone: it enables the generation of novel styles from unseen devices without requiring additional fine-tuning. To accomplish these objectives, we developed GenPrint using latent diffusion models with multimodal conditions (text and image) for consistent generation of style and identity. Our experiments leverage a variety of publicly available datasets for training and evaluation. Results demonstrate the benefits of GenPrint in terms of identity preservation, explainable control, and universality of generated images. Importantly, the GenPrint-generated images yield comparable or even superior accuracy to models trained solely on real data and further enhances performance when augmenting the diversity of existing real fingerprint datasets.
To comprehensively gauge the capacity of current models for complex reasoning, it is crucial to assess their step-by-step reasoning in a scalable manner. Established reference-based evaluation metrics rely on human-annotated reasoning chains as references to assess the model-derived chains. However, such "gold-standard" human-written reasoning chains may not be unique and their acquisition is often labor-intensive. Existing reference-free reasoning evaluation metrics, while eliminating the need for human-crafted reasoning chains as references, often require fine-tuning with human-derived chains before evaluation, complicating the process and questioning their adaptability to other datasets. To address these challenges, we harness GPT-4 to automatically evaluate reasoning chain quality, thereby removing the dependency on human-written reasoning chains for both model fine-tuning and evaluative purposes. Leveraging the Socratic method, we develop SocREval ({\bf Soc}ratic Method-Inspired {\bf R}easoning {\bf Eval}uation), a novel approach for prompt design in reference-free reasoning evaluation. Empirical results from four human annotated datasets reveal that SocREval significantly improves GPT-4's performance, surpassing existing reference-free and reference-based reasoning evaluation metrics. Beyond its demonstrated efficacy, SocREval, proves to be both cost-efficient and robust to prompt writing and example selection, as substantiated by our in-depth analysis.
Community detection is the problem of identifying natural divisions in networks. Efficient parallel algorithms for identifying such divisions is critical in a number of applications, where the size of datasets have reached significant scales. This technical report presents one of the most efficient multicore implementations of the Louvain algorithm, a high quality community detection method. On a server equipped with dual 16-core Intel Xeon Gold 6226R processors, our Louvain, which we term as GVE-Louvain, outperforms Vite, Grappolo, and NetworKit Louvain by 50x, 22x, and 20x respectively - achieving a processing rate of 560M edges/s on a 3.8B edge graph. In addition, GVE-Louvain improves performance at an average rate of 1.6x for every doubling of threads.
Data analysts have long sought to turn unstructured text data into meaningful concepts. Though common, topic modeling and clustering focus on lower-level keywords and require significant interpretative work. We introduce concept induction, a computational process that instead produces high-level concepts, defined by explicit inclusion criteria, from unstructured text. For a dataset of toxic online comments, where a state-of-the-art BERTopic model outputs "women, power, female," concept induction produces high-level concepts such as "Criticism of traditional gender roles" and "Dismissal of women's concerns." We present LLooM, a concept induction algorithm that leverages large language models to iteratively synthesize sampled text and propose human-interpretable concepts of increasing generality. We then instantiate LLooM in a mixed-initiative text analysis tool, enabling analysts to shift their attention from interpreting topics to engaging in theory-driven analysis. Through technical evaluations and four analysis scenarios ranging from literature review to content moderation, we find that LLooM's concepts improve upon the prior art of topic models in terms of quality and data coverage. In expert case studies, LLooM helped researchers to uncover new insights even from familiar datasets, for example by suggesting a previously unnoticed concept of attacks on out-party stances in a political social media dataset.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
User engagement is a critical metric for evaluating the quality of open-domain dialogue systems. Prior work has focused on conversation-level engagement by using heuristically constructed features such as the number of turns and the total time of the conversation. In this paper, we investigate the possibility and efficacy of estimating utterance-level engagement and define a novel metric, {\em predictive engagement}, for automatic evaluation of open-domain dialogue systems. Our experiments demonstrate that (1) human annotators have high agreement on assessing utterance-level engagement scores; (2) conversation-level engagement scores can be predicted from properly aggregated utterance-level engagement scores. Furthermore, we show that the utterance-level engagement scores can be learned from data. These scores can improve automatic evaluation metrics for open-domain dialogue systems, as shown by correlation with human judgements. This suggests that predictive engagement can be used as a real-time feedback for training better dialogue models.