亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large-scale swarm robotic systems consisting of numerous cooperative agents show considerable promise for performing autonomous tasks across various sectors. Nonetheless, traditional motion planning approaches often face a trade-off between scalability and solution quality due to the exponential growth of the joint state space of robots. In response, this work proposes SwarmPRM, a hierarchical, scalable, computationally efficient, and risk-aware sampling-based motion planning approach for large-scale swarm robots. SwarmPRM utilizes a Gaussian Mixture Model (GMM) to represent the swarm's macroscopic state and constructs a Probabilistic Roadmap in Gaussian space, referred to as the Gaussian roadmap, to generate a transport trajectory of GMM. This trajectory is then followed by each robot at the microscopic stage. To enhance trajectory safety, SwarmPRM incorporates the conditional value-at-risk (CVaR) in the collision checking process to impart the property of risk awareness to the constructed Gaussian roadmap. SwarmPRM then crafts a linear programming formulation to compute the optimal GMM transport trajectory within this roadmap. Extensive simulations demonstrate that SwarmPRM outperforms state-of-the-art methods in computational efficiency, scalability, and trajectory quality while offering the capability to adjust the risk tolerance of generated trajectories.

相關內容

機(ji)(ji)器(qi)人(ren)(英語(yu):Robot)包括一切模(mo)(mo)擬(ni)(ni)人(ren)類(lei)行(xing)為(wei)或(huo)(huo)思想與模(mo)(mo)擬(ni)(ni)其(qi)他生物的(de)機(ji)(ji)械(如機(ji)(ji)器(qi)狗,機(ji)(ji)器(qi)貓等)。狹義上(shang)對機(ji)(ji)器(qi)人(ren)的(de)定義還有(you)(you)很多(duo)分類(lei)法及爭議,有(you)(you)些電腦程序甚至也(ye)被稱為(wei)機(ji)(ji)器(qi)人(ren)。在(zai)當代工業中,機(ji)(ji)器(qi)人(ren)指能自動運行(xing)任務的(de)人(ren)造機(ji)(ji)器(qi)設備(bei),用(yong)以取代或(huo)(huo)協助人(ren)類(lei)工作,一般(ban)會是(shi)機(ji)(ji)電設備(bei),由計算機(ji)(ji)程序或(huo)(huo)是(shi)電子電路控(kong)制(zhi)。

知識薈萃

精品(pin)入(ru)門和進(jin)階教程、論(lun)文和代碼(ma)整理等

更多

查看相關VIP內容、論文、資(zi)訊等

Multimodal large language models (MLLMs) demonstrate strong performance across visual tasks, but their efficiency is hindered by significant computational and memory demands from processing long contexts in multimodal inputs. To address this, we introduce PAR (Prompt-Aware Token Reduction), a novel and plug-and-play approach that reduces visual tokens efficiently without compromising model performance. Unlike previous methods that rely heavily on attention mechanisms and overlooking cross-modal interactions , we uses a prompt-aware strategy to adpative identify and cluster essential visual tokens. PAR categorizes visual context redundancy into two types: external and internal. External redundancy is minimized through semantic retrieval, while internal redundancy is addressed using a token routing mechanism. This method substantially reduces computational load without requiring additional training or complex architectural modifications. \textbf{Experimental results demonstrate that across various visual question answering tasks, PAR reduces FLOPs by 83\% with a compression ratio of 89\%, while retaining 97\% of baseline accuracy.} The adaptive design of PAR achieves a 2x token reduction ratio compared to prior approaches, enabling a better balance between performance and efficiency.

Motion planning for articulated robots has traditionally been governed by algorithms that operate within manufacturer-defined payload limits. Our empirical analysis of the Franka Emika Panda robot demonstrates that this approach unnecessarily restricts the robot's dynamically-reachable task space. These results establish an expanded operational envelope for such robots, showing that they can handle payloads of more than twice their rated capacity. Additionally, our preliminary findings indicate that integrating non-prehensile motion primitives with grasping-based manipulation has the potential to further increase the success rates of manipulation tasks involving payloads exceeding nominal limits.

Recent research in federated large language models (LLMs) has primarily focused on enabling clients to fine-tune their locally deployed homogeneous LLMs collaboratively or on transferring knowledge from server-based LLMs to small language models (SLMs) at downstream clients. However, a significant gap remains in the simultaneous mutual enhancement of both the server's LLM and clients' SLMs. To bridge this gap, we propose FedMKT, a parameter-efficient federated mutual knowledge transfer framework for large and small language models. This framework is designed to adaptively transfer knowledge from the server's LLM to clients' SLMs while concurrently enriching the LLM with clients' unique domain insights. We facilitate token alignment using minimum edit distance (MinED) and then selective mutual knowledge transfer between client-side SLMs and a server-side LLM, aiming to collectively enhance their performance. Through extensive experiments across three distinct scenarios, we evaluate the effectiveness of FedMKT using various public LLMs and SLMs on a range of NLP text generation tasks. Empirical results demonstrate that FedMKT simultaneously boosts the performance of both LLMs and SLMs.

Open-Vocabulary 3D object affordance grounding aims to anticipate ``action possibilities'' regions on 3D objects with arbitrary instructions, which is crucial for robots to generically perceive real scenarios and respond to operational changes. Existing methods focus on combining images or languages that depict interactions with 3D geometries to introduce external interaction priors. However, they are still vulnerable to a limited semantic space by failing to leverage implied invariant geometries and potential interaction intentions. Normally, humans address complex tasks through multi-step reasoning and respond to diverse situations by leveraging associative and analogical thinking. In light of this, we propose GREAT (GeometRy-intEntion collAboraTive inference) for Open-Vocabulary 3D Object Affordance Grounding, a novel framework that mines the object invariant geometry attributes and performs analogically reason in potential interaction scenarios to form affordance knowledge, fully combining the knowledge with both geometries and visual contents to ground 3D object affordance. Besides, we introduce the Point Image Affordance Dataset v2 (PIADv2), the largest 3D object affordance dataset at present to support the task. Extensive experiments demonstrate the effectiveness and superiority of GREAT. Code and dataset are available at project.

Recent advances in diffusion models have revolutionized audio-driven talking head synthesis. Beyond precise lip synchronization, diffusion-based methods excel in generating subtle expressions and natural head movements that are well-aligned with the audio signal. However, these methods are confronted by slow inference speed, insufficient fine-grained control over facial motions, and occasional visual artifacts largely due to an implicit latent space derived from Variational Auto-Encoders (VAE), which prevent their adoption in realtime interaction applications. To address these issues, we introduce Ditto, a diffusion-based framework that enables controllable realtime talking head synthesis. Our key innovation lies in bridging motion generation and photorealistic neural rendering through an explicit identity-agnostic motion space, replacing conventional VAE representations. This design substantially reduces the complexity of diffusion learning while enabling precise control over the synthesized talking heads. We further propose an inference strategy that jointly optimizes three key components: audio feature extraction, motion generation, and video synthesis. This optimization enables streaming processing, realtime inference, and low first-frame delay, which are the functionalities crucial for interactive applications such as AI assistants. Extensive experimental results demonstrate that Ditto generates compelling talking head videos and substantially outperforms existing methods in both motion control and realtime performance.

Robotic collectives for military and disaster response applications require coalition formation algorithms to partition robots into appropriate task teams. Collectives' missions will often incorporate tasks that require multiple high-level robot behaviors or services, which coalition formation must accommodate. The highly dynamic and unstructured application domains also necessitate that coalition formation algorithms produce near optimal solutions (i.e., >95% utility) in near real-time (i.e., <5 minutes) with very large collectives (i.e., hundreds of robots). No previous coalition formation algorithm satisfies these requirements. An initial evaluation found that traditional auction-based algorithms' runtimes are too long, even though the centralized simulator incorporated ideal conditions unlikely to occur in real-world deployments (i.e., synchronization across robots and perfect, instantaneous communication). The hedonic game-based GRAPE algorithm can produce solutions in near real-time, but cannot be applied to multiple service collectives. This manuscript integrates GRAPE and a services model, producing GRAPE-S and Pair-GRAPE-S. These algorithms and two auction baselines were evaluated using a centralized simulator with up to 1000 robots, and via the largest distributed coalition formation simulated evaluation to date, with up to 500 robots. The evaluations demonstrate that auctions transfer poorly to distributed collectives, resulting in excessive runtimes and low utility solutions. GRAPE-S satisfies the target domains' coalition formation requirements, producing near optimal solutions in near real-time, and Pair-GRAPE-S more than satisfies the domain requirements, producing optimal solutions in near real-time. GRAPE-S and Pair-GRAPE-S are the first algorithms demonstrated to support near real-time coalition formation for very large, distributed collectives with multiple services.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of natural language understanding and generation tasks across several widely used benchmarks.

Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.

北京阿比特科技有限公司