Sparse index tracking is a prominent passive portfolio management strategy that constructs a sparse portfolio to track a financial index. A sparse portfolio is preferable to a full portfolio in terms of reducing transaction costs and avoiding illiquid assets. To achieve portfolio sparsity, conventional studies have utilized $\ell_p$-norm regularizations as a continuous surrogate of the $\ell_0$-norm regularization. Although these formulations can construct sparse portfolios, their practical application is challenging due to the intricate and time-consuming process of tuning parameters to define the precise upper limit of assets in the portfolio. In this paper, we propose a new problem formulation of sparse index tracking using an $\ell_0$-norm constraint that enables easy control of the upper bound on the number of assets in the portfolio. Moreover, our approach offers a choice between constraints on portfolio and turnover sparsity, further reducing transaction costs by limiting asset updates at each rebalancing interval. Furthermore, we develop an efficient algorithm for solving this problem based on a primal-dual splitting method. Finally, we illustrate the effectiveness of the proposed method through experiments on the S&P500 and Russell3000 index datasets.
Accurate and dense mapping in large-scale environments is essential for various robot applications. Recently, implicit neural signed distance fields (SDFs) have shown promising advances in this task. However, most existing approaches employ projective distances from range data as SDF supervision, introducing approximation errors and thus degrading the mapping quality. To address this problem, we introduce N$^{3}$-Mapping, an implicit neural mapping system featuring normal-guided neural non-projective signed distance fields. Specifically, we directly sample points along the surface normal, instead of the ray, to obtain more accurate non-projective distance values from range data. Then these distance values are used as supervision to train the implicit map. For large-scale mapping, we apply a voxel-oriented sliding window mechanism to alleviate the forgetting issue with a bounded memory footprint. Besides, considering the uneven distribution of measured point clouds, a hierarchical sampling strategy is designed to improve training efficiency. Experiments demonstrate that our method effectively mitigates SDF approximation errors and achieves state-of-the-art mapping quality compared to existing approaches.
Current content moderation practices follow the trial-and-error approach, meaning that moderators apply sequences of interventions until they obtain the desired outcome. However, being able to preemptively estimate the effects of an intervention would allow moderators the unprecedented opportunity to plan their actions ahead of application. As a first step towards this goal, here we propose and tackle the novel task of predicting the effect of a moderation intervention. We study the reactions of 16,540 users to a massive ban of online communities on Reddit, training a set of binary classifiers to identify those users who would abandon the platform after the intervention - a problem of great practical relevance. We leverage a dataset of 13.8M posts to compute a large and diverse set of 142 features, which convey information about the activity, toxicity, relations, and writing style of the users. We obtain promising results, with the best-performing model achieving micro F1 = 0.800 and macro F1 = 0.676. Our model demonstrates robust generalizability when applied to users from previously unseen communities. Furthermore, we identify activity features as the most informative predictors, followed by relational and toxicity features, while writing style features exhibit limited utility. Our results demonstrate the feasibility of predicting the effects of a moderation intervention, paving the way for a new research direction in predictive content moderation aimed at empowering moderators with intelligent tools to plan ahead their actions.
In the realm of financial analytics, leveraging unstructured data, such as earnings conference calls (ECCs), to forecast stock performance is a critical challenge that has attracted both academics and investors. While previous studies have used deep learning-based models to obtain a general view of ECCs, they often fail to capture detailed, complex information. Our study introduces a novel framework: \textbf{ECC Analyzer}, combining Large Language Models (LLMs) and multi-modal techniques to extract richer, more predictive insights. The model begins by summarizing the transcript's structure and analyzing the speakers' mode and confidence level by detecting variations in tone and pitch for audio. This analysis helps investors form an overview perception of the ECCs. Moreover, this model uses the Retrieval-Augmented Generation (RAG) based methods to meticulously extract the focuses that have a significant impact on stock performance from an expert's perspective, providing a more targeted analysis. The model goes a step further by enriching these extracted focuses with additional layers of analysis, such as sentiment and audio segment features. By integrating these insights, the ECC Analyzer performs multi-task predictions of stock performance, including volatility, value-at-risk (VaR), and return for different intervals. The results show that our model outperforms traditional analytic benchmarks, confirming the effectiveness of using advanced LLM techniques in financial analytics.
Meal recommendation, as a typical health-related recommendation task, contains complex relationships between users, courses, and meals. Among them, meal-course affiliation associates user-meal and user-course interactions. However, an extensive literature review demonstrates that there is a lack of publicly available meal recommendation datasets including meal-course affiliation. Meal recommendation research has been constrained in exploring the impact of cooperation between two levels of interaction on personalization and healthiness. To pave the way for meal recommendation research, we introduce a new benchmark dataset called MealRec$^+$. Due to constraints related to user health privacy and meal scenario characteristics, the collection of data that includes both meal-course affiliation and two levels of interactions is impeded. Therefore, a simulation method is adopted to derive meal-course affiliation and user-meal interaction from the user's dining sessions simulated based on user-course interaction data. Then, two well-known nutritional standards are used to calculate the healthiness scores of meals. Moreover, we experiment with several baseline models, including separate and cooperative interaction learning methods. Our experiment demonstrates that cooperating the two levels of interaction in appropriate ways is beneficial for meal recommendations. Furthermore, in response to the less healthy recommendation phenomenon found in the experiment, we explore methods to enhance the healthiness of meal recommendations. The dataset is available on GitHub (//github.com/WUT-IDEA/MealRecPlus).
In the evolving landscape of digital finance, the transition from centralized to decentralized trust mechanisms, primarily driven by blockchain technology, plays a critical role in shaping the cryptocurrency ecosystem. This paradigm shift raises questions about the traditional reliance on centralized trust and introduces a novel, decentralized trust framework built upon distributed networks. Our research delves into the consequences of this shift, particularly focusing on how incidents influence trust within cryptocurrency markets, thereby affecting trade behaviors in centralized (CEXs) and decentralized exchanges (DEXs). We conduct a comprehensive analysis of various events, assessing their effects on market dynamics, including token valuation and trading volumes in both CEXs and DEXs. Our findings highlight the pivotal role of trust in directing user preferences and the fluidity of trust transfer between centralized and decentralized platforms. Despite certain anomalies, the results largely align with our initial hypotheses, revealing the intricate nature of user trust in cryptocurrency markets. This study contributes significantly to interdisciplinary research, bridging distributed systems, behavioral finance, and Decentralized Finance (DeFi). It offers valuable insights for the distributed computing community, particularly in understanding and applying distributed trust mechanisms in digital economies, paving the way for future research that could further explore the socio-economic dimensions and leverage blockchain data in this dynamic domain.
Humans learn social skills through both imitation and social interaction. This social learning process is largely understudied by existing research on building language agents. Motivated by this gap, we propose an interactive learning method, SOTOPIA-$\pi$, improving the social intelligence of language agents. This method leverages behavior cloning and self-reinforcement training on filtered social interaction data according to large language model (LLM) ratings. We show that our training method allows a 7B LLM to reach the social goal completion ability of an expert model (GPT-4-based agent), while improving the safety of language agents and maintaining general QA ability on the MMLU benchmark. We also find that this training paradigm uncovers some difficulties in LLM-based evaluation of social intelligence: LLM-based evaluators overestimate the abilities of the language agents trained specifically for social interaction.
Non-malleable extractors are generalizations and strengthening of standard randomness extractors, that are resilient to adversarial tampering. Such extractors have wide applications in cryptography and explicit construction of extractors. In the well-studied models of two-source and affine non-malleable extractors, the previous best constructions only work for entropy rate $>2/3$ and $1-\gamma$ respectively by Li (FOCS' 23). We present explicit constructions of two-source and affine non-malleable extractors that match the state-of-the-art constructions of standard ones for small entropy. Our main results include two-source and affine non-malleable extractors (over $\mathsf{F}_2$) for sources on $n$ bits with min-entropy $k \ge \log^C n$ and polynomially small error, matching the parameters of standard extractors by Chattopadhyay and Zuckerman (STOC' 16, Annals of Mathematics' 19) and Li (FOCS' 16), as well as those with min-entropy $k = O(\log n)$ and constant error, matching the parameters of standard extractors by Li (FOCS' 23). Our constructions significantly improve previous results, and the parameters (entropy requirement and error) are the best possible without first improving the constructions of standard extractors. In addition, our improved affine non-malleable extractors give strong lower bounds for a certain kind of read-once linear branching programs, recently introduced by Gryaznov, Pudl\'{a}k, and Talebanfard (CCC' 22) as a generalization of several well-studied computational models. These bounds match the previously best-known average-case hardness results given by Chattopadhyay and Liao (CCC' 23) and Li (FOCS' 23), where the branching program size lower bounds are close to optimal, but the explicit functions we use here are different.\ Our results also suggest a possible deeper connection between non-malleable extractors and standard ones.
We investigate the statistical behavior of gradient descent iterates with dropout in the linear regression model. In particular, non-asymptotic bounds for the convergence of expectations and covariance matrices of the iterates are derived. The results shed more light on the widely cited connection between dropout and l2-regularization in the linear model. We indicate a more subtle relationship, owing to interactions between the gradient descent dynamics and the additional randomness induced by dropout. Further, we study a simplified variant of dropout which does not have a regularizing effect and converges to the least squares estimator
Current recommendation systems are significantly affected by a serious issue of temporal data shift, which is the inconsistency between the distribution of historical data and that of online data. Most existing models focus on utilizing updated data, overlooking the transferable, temporal data shift-free information that can be learned from shifting data. We propose the Temporal Invariance of Association theorem, which suggests that given a fixed search space, the relationship between the data and the data in the search space keeps invariant over time. Leveraging this principle, we designed a retrieval-based recommendation system framework that can train a data shift-free relevance network using shifting data, significantly enhancing the predictive performance of the original model in the recommendation system. However, retrieval-based recommendation models face substantial inference time costs when deployed online. To address this, we further designed a distill framework that can distill information from the relevance network into a parameterized module using shifting data. The distilled model can be deployed online alongside the original model, with only a minimal increase in inference time. Extensive experiments on multiple real datasets demonstrate that our framework significantly improves the performance of the original model by utilizing shifting data.
We give a poly-time algorithm for the $k$-edge-connected spanning subgraph ($k$-ECSS) problem that returns a solution of cost no greater than the cheapest $(k+10)$-ECSS on the same graph. Our approach enhances the iterative relaxation framework with a new ingredient, which we call ghost values, that allows for high sparsity in intermediate problems. Our guarantees improve upon the best-known approximation factor of $2$ for $k$-ECSS whenever the optimal value of $(k+10)$-ECSS is close to that of $k$-ECSS. This is a property that holds for the closely related problem $k$-edge-connected spanning multi-subgraph ($k$-ECSM), which is identical to $k$-ECSS except edges can be selected multiple times at the same cost. As a consequence, we obtain a $\left(1+O\left(\frac{1}{k}\right)\right)$-approximation algorithm for $k$-ECSM, which resolves a conjecture of Pritchard and improves upon a recent $\left(1+O\left(\frac{1}{\sqrt{k}}\right)\right)$-approximation algorithm of Karlin, Klein, Oveis Gharan, and Zhang. Moreover, we present a matching lower bound for $k$-ECSM, showing that our approximation ratio is tight up to the constant factor in $O\left(\frac{1}{k}\right)$, unless $P=NP$.