亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Linear regression models have been extensively considered in the literature. However, in some practical applications they may not be appropriate all over the range of the covariate. In this paper, a more flexible model is introduced by considering a regression model $Y=r(X)+\varepsilon$ where the regression function $r(\cdot)$ is assumed to be linear for large values in the domain of the predictor variable $X$. More precisely, we assume that $r(x)=\alpha_0+\beta_0 x$ for $x> u_0$, where the value $u_0$ is identified as the smallest value satisfying such a property. A penalized procedure is introduced to estimate the threshold $u_0$. The considered proposal focusses on a semiparametric approach since no parametric model is assumed for the regression function for values smaller than $u_0$. Consistency properties of both the threshold estimator and the estimators of $(\alpha_0,\beta_0)$ are derived, under mild assumptions. Through a numerical study, the small sample properties of the proposed procedure and the importance of introducing a penalization are investigated. The analysis of a real data set allows us to demonstrate the usefulness of the penalized estimators.

相關內容

In this article, we study nonparametric inference for a covariate-adjusted regression function. This parameter captures the average association between a continuous exposure and an outcome after adjusting for other covariates. In particular, under certain causal conditions, this parameter corresponds to the average outcome had all units been assigned to a specific exposure level, known as the causal dose-response curve. We propose a debiased local linear estimator of the covariate-adjusted regression function, and demonstrate that our estimator converges pointwise to a mean-zero normal limit distribution. We use this result to construct asymptotically valid confidence intervals for function values and differences thereof. In addition, we use approximation results for the distribution of the supremum of an empirical process to construct asymptotically valid uniform confidence bands. Our methods do not require undersmoothing, permit the use of data-adaptive estimators of nuisance functions, and our estimator attains the optimal rate of convergence for a twice differentiable function. We illustrate the practical performance of our estimator using numerical studies and an analysis of the effect of air pollution exposure on cardiovascular mortality.

Stein operators allow to characterise probability distributions via differential operators. We use these characterizations to obtain a new class of point estimators for marginal parameters of strictly stationary and ergodic processes. These so-called Stein estimators satisfy the desirable classical properties such as consistency and asymptotic normality. As a consequence of the usually simple form of the operator, we obtain explicit estimators in cases where standard methods such as (pseudo-) maximum likelihood estimation require a numerical procedure to calculate the estimate. In addition, with our approach, one can choose from a large class of test functions which allows to improve significantly on the moment estimator. For several probability laws, we can determine an estimator that shows an asymptotic behaviour close to efficiency in the i.i.d.\ case. Moreover, for i.i.d. observations, we retrieve data-dependent functions that result in asymptotically efficient estimators and give a sequence of explicit Stein estimators that converge to the MLE.

We use Stein characterisations to derive new moment-type estimators for the parameters of several multivariate distributions in the i.i.d. case; we also derive the asymptotic properties of these estimators. Our examples include the multivariate truncated normal distribution and several spherical distributions. The estimators are explicit and therefore provide an interesting alternative to the maximum-likelihood estimator. The quality of these estimators is assessed through competitive simulation studies in which we compare their behaviour to the performance of other estimators available in the literature.

Robust Markov decision processes (MDPs) are used for applications of dynamic optimization in uncertain environments and have been studied extensively. Many of the main properties and algorithms of MDPs, such as value iteration and policy iteration, extend directly to RMDPs. Surprisingly, there is no known analog of the MDP convex optimization formulation for solving RMDPs. This work describes the first convex optimization formulation of RMDPs under the classical sa-rectangularity and s-rectangularity assumptions. By using entropic regularization and exponential change of variables, we derive a convex formulation with a number of variables and constraints polynomial in the number of states and actions, but with large coefficients in the constraints. We further simplify the formulation for RMDPs with polyhedral, ellipsoidal, or entropy-based uncertainty sets, showing that, in these cases, RMDPs can be reformulated as conic programs based on exponential cones, quadratic cones, and non-negative orthants. Our work opens a new research direction for RMDPs and can serve as a first step toward obtaining a tractable convex formulation of RMDPs.

Generalized Additive Runge-Kutta schemes have shown to be a suitable tool for solving ordinary differential equations with additively partitioned right-hand sides. This work develops symplectic GARK schemes for additively partitioned Hamiltonian systems. In a general setting, we derive conditions for symplecticness, as well as symmetry and time-reversibility. We show how symplectic and symmetric schemes can be constructed based on schemes which are only symplectic, or only symmetric. Special attention is given to the special case of partitioned schemes for Hamiltonians split into multiple potential and kinetic energies. Finally we show how symplectic GARK schemes can leverage different time scales and evaluation costs for different potentials, and provide efficient numerical solutions by using different order for these parts.

Enumeration problems are often encountered as key subroutines in the exact computation of graph parameters such as chromatic number, treewidth, or treedepth. In the case of treedepth computation, the enumeration of inclusion-wise minimal separators plays a crucial role. However and quite surprisingly, the complexity status of this problem has not been settled since it has been posed as an open direction by Kloks and Kratsch in 1998. Recently at the PACE 2020 competition dedicated to treedepth computation, solvers have been circumventing that by listing all minimal $a$-$b$ separators and filtering out those that are not inclusion-wise minimal, at the cost of efficiency. Naturally, having an efficient algorithm for listing inclusion-wise minimal separators would drastically improve such practical algorithms. In this note, however, we show that no efficient algorithm is to be expected from an output-sensitive perspective, namely, we prove that there is no output-polynomial time algorithm for inclusion-wise minimal separators enumeration unless P = NP.

This work is motivated by the need of efficient numerical simulations of gas flows in the serpentine channels used in proton-exchange membrane fuel cells. In particular, we consider the Poisson problem in a 2D domain composed of several long straight rectangular sections and of several bends corners. In order to speed up the resolution, we propose a 0D model in the rectangular parts of the channel and a Finite Element resolution in the bends. To find a good compromise between precision and time consuming, the challenge is double: how to choose a suitable position of the interface between the 0D and the 2D models and how to control the discretization error in the bends. We shall present an \textit{a posteriori} error estimator based on an equilibrated flux reconstruction in the subdomains where the Finite Element method is applied. The estimates give a global upper bound on the error measured in the energy norm of the difference between the exact and approximate solutions on the whole domain. They are guaranteed, meaning that they feature no undetermined constants. (global) Lower bounds for the error are also derived. An adaptive algorithm is proposed to use smartly the estimator for aforementioned double challenge. A numerical validation of the estimator and the algorithm completes the work. \end{abstract}

Given any finite set equipped with a probability measure, one may compute its Shannon entropy or information content. The entropy becomes the logarithm of the cardinality of the set when the uniform probability is used. Leinster introduced a notion of Euler characteristic for certain finite categories, also known as magnitude, that can be seen as a categorical generalization of cardinality. This paper aims to connect the two ideas by considering the extension of Shannon entropy to finite categories endowed with probability, in such a way that the magnitude is recovered when a certain choice of "uniform" probability is made.

Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

北京阿比特科技有限公司