亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

High-dimensional data arises in numerous applications, and the rapidly developing field of geometric deep learning seeks to develop neural network architectures to analyze such data in non-Euclidean domains, such as graphs and manifolds. Recent work by Z. Wang, L. Ruiz, and A. Ribeiro has introduced a method for constructing manifold neural networks using the spectral decomposition of the Laplace Beltrami operator. Moreover, in this work, the authors provide a numerical scheme for implementing such neural networks when the manifold is unknown and one only has access to finitely many sample points. The authors show that this scheme, which relies upon building a data-driven graph, converges to the continuum limit as the number of sample points tends to infinity. Here, we build upon this result by establishing a rate of convergence that depends on the intrinsic dimension of the manifold but is independent of the ambient dimension. We also discuss how the rate of convergence depends on the depth of the network and the number of filters used in each layer.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國(guo)際網絡(luo)會議。 Publisher:IFIP。 SIT:

Parameter efficient transfer learning (PETL) is an emerging research spot that aims to adapt large-scale pre-trained models to downstream tasks. Recent advances have achieved great success in saving storage and computation costs. However, these methods do not take into account instance-specific visual clues for visual tasks. In this paper, we propose a Dynamic Visual Prompt Tuning framework (DVPT), which can generate a dynamic instance-wise token for each image. In this way, it can capture the unique visual feature of each image, which can be more suitable for downstream visual tasks. We designed a Meta-Net module that can generate learnable prompts based on each image, thereby capturing dynamic instance-wise visual features. Extensive experiments on a wide range of downstream recognition tasks show that DVPT achieves superior performance than other PETL methods. More importantly, DVPT even outperforms full fine-tuning on 17 out of 19 downstream tasks while maintaining high parameter efficiency. Our code will be released soon.

Performing a Bayesian inference on large spatio-temporal models requires extracting inverse elements of large sparse precision matrices for marginal variances. Although direct matrix factorizations can be used for the inversion, such methods fail to scale well for distributed problems when run on large computing clusters. On the contrary, Krylov subspace methods for the selected inversion have been gaining traction. We propose a parallel hybrid approach based on domain decomposition, which extends the Rao-Blackwellized Monte Carlo estimator for distributed precision matrices. Our approach exploits the strength of Krylov subspace methods as global solvers and efficiency of direct factorizations as base case solvers to compute the marginal variances using a divide-and-conquer strategy. By introducing subdomain overlaps, one can achieve a greater accuracy at an increased computational effort with little to no additional communication. We demonstrate the speed improvements on both simulated models and a massive US daily temperature data.

Neuromorphic computing holds the promise to achieve the energy efficiency and robust learning performance of biological neural systems. To realize the promised brain-like intelligence, it needs to solve the challenges of the neuromorphic hardware architecture design of biological neural substrate and the hardware amicable algorithms with spike-based encoding and learning. Here we introduce a neural spike coding model termed spiketrum, to characterize and transform the time-varying analog signals, typically auditory signals, into computationally efficient spatiotemporal spike patterns. It minimizes the information loss occurring at the analog-to-spike transformation and possesses informational robustness to neural fluctuations and spike losses. The model provides a sparse and efficient coding scheme with precisely controllable spike rate that facilitates training of spiking neural networks in various auditory perception tasks. We further investigate the algorithm-hardware co-designs through a neuromorphic cochlear prototype which demonstrates that our approach can provide a systematic solution for spike-based artificial intelligence by fully exploiting its advantages with spike-based computation.

We present a distributed algebra system for efficient and compact implementation of numerical time integration schemes on parallel computers and graphics processing units (GPU). The software implementation combines the time integration library Odeint from Boost with the OpenFPM framework for scalable scientific computing. Implementing multi-stage, multi-step, or adaptive time integration methods in distributed-memory parallel codes or on GPUs is challenging. The present algebra system addresses this by making the time integration methods from Odeint available in a concise template-expression language for numerical simulations distributed and parallelized using OpenFPM. This allows using state-of-the-art time integration schemes, or switching between schemes, by changing one line of code, while maintaining parallel scalability. This enables scalable time integration with compact code and facilitates rapid rewriting and deployment of simulation algorithms. We benchmark the present software for exponential and sigmoidal dynamics and present an application example to the 3D Gray-Scott reaction-diffusion problem on both CPUs and GPUs in only 60 lines of code.

Identifying a biclique with the maximum number of edges bears considerable implications for numerous fields of application, such as detecting anomalies in E-commerce transactions, discerning protein-protein interactions in biology, and refining the efficacy of social network recommendation algorithms. However, the inherent NP-hardness of this problem significantly complicates the matter. The prohibitive time complexity of existing algorithms is the primary bottleneck constraining the application scenarios. Aiming to address this challenge, we present an unprecedented exploration of a quantum computing approach. Efficient quantum algorithms, as a crucial future direction for handling NP-hard problems, are presently under intensive investigation, of which the potential has already been proven in practical arenas such as cybersecurity. However, in the field of quantum algorithms for graph databases, little work has been done due to the challenges presented by the quantum representation of complex graph topologies. In this study, we delve into the intricacies of encoding a bipartite graph on a quantum computer. Given a bipartite graph with n vertices, we propose a ground-breaking algorithm qMBS with time complexity O^*(2^(n/2)), illustrating a quadratic speed-up in terms of complexity compared to the state-of-the-art. Furthermore, we detail two variants tailored for the maximum vertex biclique problem and the maximum balanced biclique problem. To corroborate the practical performance and efficacy of our proposed algorithms, we have conducted proof-of-principle experiments utilizing IBM quantum simulators, of which the results provide a substantial validation of our approach to the extent possible to date.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.

北京阿比特科技有限公司