Black-box adversarial attacks generate adversarial samples via iterative optimizations using repeated queries. Defending deep neural networks against such attacks has been challenging. In this paper, we propose an efficient Boundary Defense (BD) method which mitigates black-box attacks by exploiting the fact that the adversarial optimizations often need samples on the classification boundary. Our method detects the boundary samples as those with low classification confidence and adds white Gaussian noise to their logits. The method's impact on the deep network's classification accuracy is analyzed theoretically. Extensive experiments are conducted and the results show that the BD method can reliably defend against both soft and hard label black-box attacks. It outperforms a list of existing defense methods. For IMAGENET models, by adding zero-mean white Gaussian noise with standard deviation 0.1 to logits when the classification confidence is less than 0.3, the defense reduces the attack success rate to almost 0 while limiting the classification accuracy degradation to around 1 percent.
A growing body of work has shown that deep neural networks are susceptible to adversarial examples. These take the form of small perturbations applied to the model's input which lead to incorrect predictions. Unfortunately, most literature focuses on visually imperceivable perturbations to be applied to digital images that often are, by design, impossible to be deployed to physical targets. We present Adversarial Scratches: a novel L0 black-box attack, which takes the form of scratches in images, and which possesses much greater deployability than other state-of-the-art attacks. Adversarial Scratches leverage B\'ezier Curves to reduce the dimension of the search space and possibly constrain the attack to a specific location. We test Adversarial Scratches in several scenarios, including a publicly available API and images of traffic signs. Results show that, often, our attack achieves higher fooling rate than other deployable state-of-the-art methods, while requiring significantly fewer queries and modifying very few pixels.
The growing complexity of Cyber-Physical Systems (CPS) and challenges in ensuring safety and security have led to the increasing use of deep learning methods for accurate and scalable anomaly detection. However, machine learning (ML) models often suffer from low performance in predicting unexpected data and are vulnerable to accidental or malicious perturbations. Although robustness testing of deep learning models has been extensively explored in applications such as image classification and speech recognition, less attention has been paid to ML-driven safety monitoring in CPS. This paper presents the preliminary results on evaluating the robustness of ML-based anomaly detection methods in safety-critical CPS against two types of accidental and malicious input perturbations, generated using a Gaussian-based noise model and the Fast Gradient Sign Method (FGSM). We test the hypothesis of whether integrating the domain knowledge (e.g., on unsafe system behavior) with the ML models can improve the robustness of anomaly detection without sacrificing accuracy and transparency. Experimental results with two case studies of Artificial Pancreas Systems (APS) for diabetes management show that ML-based safety monitors trained with domain knowledge can reduce on average up to 54.2% of robustness error and keep the average F1 scores high while improving transparency.
Data poisoning attacks, in which a malicious adversary aims to influence a model by injecting "poisoned" data into the training process, have attracted significant recent attention. In this work, we take a closer look at existing poisoning attacks and connect them with old and new algorithms for solving sequential Stackelberg games. By choosing an appropriate loss function for the attacker and optimizing with algorithms that exploit second-order information, we design poisoning attacks that are effective on neural networks. We present efficient implementations that exploit modern auto-differentiation packages and allow simultaneous and coordinated generation of tens of thousands of poisoned points, in contrast to existing methods that generate poisoned points one by one. We further perform extensive experiments that empirically explore the effect of data poisoning attacks on deep neural networks.
Deep neural networks have become an integral part of our software infrastructure and are being deployed in many widely-used and safety-critical applications. However, their integration into many systems also brings with it the vulnerability to test time attacks in the form of Universal Adversarial Perturbations (UAPs). UAPs are a class of perturbations that when applied to any input causes model misclassification. Although there is an ongoing effort to defend models against these adversarial attacks, it is often difficult to reconcile the trade-offs in model accuracy and robustness to adversarial attacks. Jacobian regularization has been shown to improve the robustness of models against UAPs, whilst model ensembles have been widely adopted to improve both predictive performance and model robustness. In this work, we propose a novel approach, Jacobian Ensembles-a combination of Jacobian regularization and model ensembles to significantly increase the robustness against UAPs whilst maintaining or improving model accuracy. Our results show that Jacobian Ensembles achieves previously unseen levels of accuracy and robustness, greatly improving over previous methods that tend to skew towards only either accuracy or robustness.
A rising number of botnet families have been successfully detected using deep learning architectures. While the variety of attacks increases, these architectures should become more robust against attacks. They have been proven to be very sensitive to small but well constructed perturbations in the input. Botnet detection requires extremely low false-positive rates (FPR), which are not commonly attainable in contemporary deep learning. Attackers try to increase the FPRs by making poisoned samples. The majority of recent research has focused on the use of model loss functions to build adversarial examples and robust models. In this paper, two LSTM-based classification algorithms for botnet classification with an accuracy higher than 98\% are presented. Then, the adversarial attack is proposed, which reduces the accuracy to about30\%. Then, by examining the methods for computing the uncertainty, the defense method is proposed to increase the accuracy to about 70\%. By using the deep ensemble and stochastic weight averaging quantification methods it has been investigated the uncertainty of the accuracy in the proposed methods.
This study explores how robots and generative approaches can be used to mount successful false-acceptance adversarial attacks on signature verification systems. Initially, a convolutional neural network topology and data augmentation strategy are explored and tuned, producing an 87.12% accurate model for the verification of 2,640 human signatures. Two robots are then tasked with forging 50 signatures, where 25 are used for the verification attack, and the remaining 25 are used for tuning of the model to defend against them. Adversarial attacks on the system show that there exists an information security risk; the Line-us robotic arm can fool the system 24% of the time and the iDraw 2.0 robot 32% of the time. A conditional GAN finds similar success, with around 30% forged signatures misclassified as genuine. Following fine-tune transfer learning of robotic and generative data, adversarial attacks are reduced below the model threshold by both robots and the GAN. It is observed that tuning the model reduces the risk of attack by robots to 8% and 12%, and that conditional generative adversarial attacks can be reduced to 4% when 25 images are presented and 5% when 1000 images are presented.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan