Analyzing a unique real-time dataset from across 26 social media platforms, we show why the hate-extremism ecosystem now has unprecedented reach and recruitment paths online; why it is now able to exert instant and massive global mainstream influence, e.g. following the October 7 Hamas attack; why it will become increasingly robust in 2024 and beyond; why recent E.U. laws fall short because the effect of many smaller, lesser-known platforms outstrips larger ones like Twitter; and why law enforcement should expect increasingly hard-to-understand paths ahead of offline mass attacks. This new picture of online hate and extremism challenges current notions of a niche activity at the 'fringe' of the Internet driven by specific news sources. But it also suggests a new opportunity for system-wide control akin to adaptive vs. extinction treatments for cancer.
In this paper, we study a new approach related to the convergence analysis of Ishikawa-type iterative models to a common fixed point of two non-expansive mappings in Banach spaces. The main novelty of our contribution lies in the so-called \emph{optimal error bounds}, which established some necessary and sufficient conditions for convergence and derived both the error estimates and bounds on the convergence rates for iterative schemes. Although a special interest here is devoted to the Ishikawa and modified Ishikawa iterative sequences, the theory of \emph{optimal error bounds} proposed in this paper can also be favorably applied to various types of iterative models to approximate common fixed points of non-expansive mappings.
Minimizing data storage poses a significant challenge in large-scale metagenomic projects. In this paper, we present a new method for improving the encoding of FASTQ files generated by metagenomic sequencing. This method incorporates metagenomic classification followed by a recursive filter for clustering reads by DNA sequence similarity to improve the overall reference-free compression. In the results, we show an overall improvement in the compression of several datasets. As hypothesized, we show a progressive compression gain for higher coverage depth and number of identified species. Additionally, we provide an implementation that is freely available at //github.com/cobilab/mizar and can be customized to work with other FASTQ compression tools.
We introduce ensembles of stochastic neural networks to approximate the Bayesian posterior, combining stochastic methods such as dropout with deep ensembles. The stochastic ensembles are formulated as families of distributions and trained to approximate the Bayesian posterior with variational inference. We implement stochastic ensembles based on Monte Carlo dropout, DropConnect and a novel non-parametric version of dropout and evaluate them on a toy problem and CIFAR image classification. For both tasks, we test the quality of the posteriors directly against Hamiltonian Monte Carlo simulations. Our results show that stochastic ensembles provide more accurate posterior estimates than other popular baselines for Bayesian inference.
Physics-informed neural networks (PINNs) and their variants have recently emerged as alternatives to traditional partial differential equation (PDE) solvers, but little literature has focused on devising accurate numerical integration methods for neural networks (NNs), which is essential for getting accurate solutions. In this work, we propose adaptive quadratures for the accurate integration of neural networks and apply them to loss functions appearing in low-dimensional PDE discretisations. We show that at opposite ends of the spectrum, continuous piecewise linear (CPWL) activation functions enable one to bound the integration error, while smooth activations ease the convergence of the optimisation problem. We strike a balance by considering a CPWL approximation of a smooth activation function. The CPWL activation is used to obtain an adaptive decomposition of the domain into regions where the network is almost linear, and we derive an adaptive global quadrature from this mesh. The loss function is then obtained by evaluating the smooth network (together with other quantities, e.g., the forcing term) at the quadrature points. We propose a method to approximate a class of smooth activations by CPWL functions and show that it has a quadratic convergence rate. We then derive an upper bound for the overall integration error of our proposed adaptive quadrature. The benefits of our quadrature are evaluated on a strong and weak formulation of the Poisson equation in dimensions one and two. Our numerical experiments suggest that compared to Monte-Carlo integration, our adaptive quadrature makes the convergence of NNs quicker and more robust to parameter initialisation while needing significantly fewer integration points and keeping similar training times.
In this paper, we propose an iterative convolution-thresholding method (ICTM) based on prediction-correction for solving the topology optimization problem in steady-state heat transfer equations. The problem is formulated as a constrained minimization problem of the complementary energy, incorporating a perimeter/surface-area regularization term, while satisfying a steady-state heat transfer equation. The decision variables of the optimization problem represent the domains of different materials and are represented by indicator functions. The perimeter/surface-area term of the domain is approximated using Gaussian kernel convolution with indicator functions. In each iteration, the indicator function is updated using a prediction-correction approach. The prediction step is based on the variation of the objective functional by imposing the constraints, while the correction step ensures the monotonically decreasing behavior of the objective functional. Numerical results demonstrate the efficiency and robustness of our proposed method, particularly when compared to classical approaches based on the ICTM.
In this paper, our objective is to present a constraining principle governing the spectral properties of the sample covariance matrix. This principle exhibits harmonious behavior across diverse limiting frameworks, eliminating the need for constraints on the rates of dimension $p$ and sample size $n$, as long as they both tend to infinity. We accomplish this by employing a suitable normalization technique on the original sample covariance matrix. Following this, we establish a harmonic central limit theorem for linear spectral statistics within this expansive framework. This achievement effectively eliminates the necessity for a bounded spectral norm on the population covariance matrix and relaxes constraints on the rates of dimension $p$ and sample size $n$, thereby significantly broadening the applicability of these results in the field of high-dimensional statistics. We illustrate the power of the established results by considering the test for covariance structure under high dimensionality, freeing both $p$ and $n$.
In this paper, we propose the application of shrinkage strategies to estimate coefficients in the Bell regression models when prior information about the coefficients is available. The Bell regression models are well-suited for modeling count data with multiple covariates. Furthermore, we provide a detailed explanation of the asymptotic properties of the proposed estimators, including asymptotic biases and mean squared errors. To assess the performance of the estimators, we conduct numerical studies using Monte Carlo simulations and evaluate their simulated relative efficiency. The results demonstrate that the suggested estimators outperform the unrestricted estimator when prior information is taken into account. Additionally, we present an empirical application to demonstrate the practical utility of the suggested estimators.
In this paper we develop a novel neural network model for predicting implied volatility surface. Prior financial domain knowledge is taken into account. A new activation function that incorporates volatility smile is proposed, which is used for the hidden nodes that process the underlying asset price. In addition, financial conditions, such as the absence of arbitrage, the boundaries and the asymptotic slope, are embedded into the loss function. This is one of the very first studies which discuss a methodological framework that incorporates prior financial domain knowledge into neural network architecture design and model training. The proposed model outperforms the benchmarked models with the option data on the S&P 500 index over 20 years. More importantly, the domain knowledge is satisfied empirically, showing the model is consistent with the existing financial theories and conditions related to implied volatility surface.
This paper does not describe a working system. Instead, it presents a single idea about representation which allows advances made by several different groups to be combined into an imaginary system called GLOM. The advances include transformers, neural fields, contrastive representation learning, distillation and capsules. GLOM answers the question: How can a neural network with a fixed architecture parse an image into a part-whole hierarchy which has a different structure for each image? The idea is simply to use islands of identical vectors to represent the nodes in the parse tree. If GLOM can be made to work, it should significantly improve the interpretability of the representations produced by transformer-like systems when applied to vision or language
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.