亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The recent introduction of thermodynamic integration techniques has provided a new framework for understanding and improving variational inference (VI). In this work, we present a careful analysis of the thermodynamic variational objective (TVO), bridging the gap between existing variational objectives and shedding new insights to advance the field. In particular, we elucidate how the TVO naturally connects the three key variational schemes, namely the importance-weighted VI, Renyi-VI, and MCMC-VI, which subsumes most VI objectives employed in practice. To explain the performance gap between theory and practice, we reveal how the pathological geometry of thermodynamic curves negatively affects TVO. By generalizing the integration path from the geometric mean to the weighted Holder mean, we extend the theory of TVO and identify new opportunities for improving VI. This motivates our new VI objectives, named the Holder bounds, which flatten the thermodynamic curves and promise to achieve a one-step approximation of the exact marginal log-likelihood. A comprehensive discussion on the choices of numerical estimators is provided. We present strong empirical evidence on both synthetic and real-world datasets to support our claims.

相關內容

 出自“頭腦風暴”一詞。所謂頭腦風暴(Brain-storming)系統是運用系統的、統一的視覺符號系統。視覺識別是靜態的識別符號具體化、視覺化的傳達形式,項目最多,層面最廣,效果更直接。視覺識別系統屬于CIS中的VI,用完整、體系的視覺傳達體系,將企業理念、文化特質、服務內容、企業規范等抽象語意轉換為具體符號的概念,塑造出獨特的企業形象。視覺識別系統分為基本要素系統和應用要素系統兩方面。基本要素系統主要包括:企業名稱、企業標志、標準字、標準色、象征圖案、宣傳口語、市場行銷報告書等。應用系統主要包括:辦公事務用品、生產設備、建筑環境、產品包裝、廣告媒體、交通工具、衣著制服、旗幟、招牌、標識牌、櫥窗、陳列展示等。視覺識別(VI)在CI系統大眾所接受,據有主導的地位。

We contribute to a better understanding of the class of functions that is represented by a neural network with ReLU activations and a given architecture. Using techniques from mixed-integer optimization, polyhedral theory, and tropical geometry, we provide a mathematical counterbalance to the universal approximation theorems which suggest that a single hidden layer is sufficient for learning tasks. In particular, we investigate whether the class of exactly representable functions strictly increases by adding more layers (with no restrictions on size). This problem has potential impact on algorithmic and statistical aspects because of the insight it provides into the class of functions represented by neural hypothesis classes. However, to the best of our knowledge, this question has not been investigated in the neural network literature. We also present upper bounds on the sizes of neural networks required to represent functions in these neural hypothesis classes.

We establish summability results for coefficient sequences of Wiener-Hermite polynomial chaos expansions for countably-parametric solutions of linear elliptic and parabolic divergence-form partial differential equations with Gaussian random field inputs. The novel proof technique developed here is based on analytic continuation of parametric solutions into the complex domain. It differs from previous works that used bootstrap arguments and induction on the differentiation order of solution derivatives with respect to the parameters. The present holomorphy-based argument allows a unified, "differentiation-free" sparsity analysis of Wiener-Hermite polynomial chaos expansions in various scales of function spaces. The analysis also implies corresponding results for posterior densities in Bayesian inverse problems subject to Gaussian priors on uncertain inputs from function spaces. Our results furthermore yield dimension-independent convergence rates of various constructive high-dimensional deterministic numerical approximation schemes such as single-level and multi-level versions of anisotropic sparse-grid Hermite-Smolyak interpolation and quadrature in both forward and inverse computational uncertainty quantification.

Stochastic majorization-minimization (SMM) is an online extension of the classical principle of majorization-minimization, which consists of sampling i.i.d. data points from a fixed data distribution and minimizing a recursively defined majorizing surrogate of an objective function. In this paper, we introduce stochastic block majorization-minimization, where the surrogates can now be only block multi-convex and a single block is optimized at a time within a diminishing radius. Relaxing the standard strong convexity requirements for surrogates in SMM, our framework gives wider applicability including online CANDECOMP/PARAFAC (CP) dictionary learning and yields greater computational efficiency especially when the problem dimension is large. We provide an extensive convergence analysis on the proposed algorithm, which we derive under possibly dependent data streams, relaxing the standard i.i.d. assumption on data samples. We show that the proposed algorithm converges almost surely to the set of stationary points of a nonconvex objective under constraints at a rate $O((\log n)^{1+\eps}/n^{1/2})$ for the empirical loss function and $O((\log n)^{1+\eps}/n^{1/4})$ for the expected loss function, where $n$ denotes the number of data samples processed. Under some additional assumption, the latter convergence rate can be improved to $O((\log n)^{1+\eps}/n^{1/2})$. Our results provide first convergence rate bounds for various online matrix and tensor decomposition algorithms under a general Markovian data setting.

We construct s-interleaved linearized Reed-Solomon (ILRS) codes and variants and propose efficient decoding schemes that can correct errors beyond the unique decoding radius in the sum-rank, sum-subspace and skew metric. The proposed interpolation-based scheme for ILRS codes can be used as a list decoder or as a probabilistic unique decoder that corrects errors of sum-rank up to $t\leq\frac{s}{s+1}(n-k)$, where s is the interleaving order, n the length and k the dimension of the code. Upper bounds on the list size and the decoding failure probability are given where the latter is based on a novel Loidreau-Overbeck-like decoder for ILRS codes. The results are extended to decoding of lifted interleaved linearized Reed-Solomon (LILRS) codes in the sum-subspace metric and interleaved skew Reed-Solomon (ISRS) codes in the skew metric. We generalize fast minimal approximant basis interpolation techniques to obtain efficient decoding schemes for ILRS codes (and variants) with subquadratic complexity in the code length. Up to our knowledge, the presented decoding schemes are the first being able to correct errors beyond the unique decoding region in the sum-rank, sum-subspace and skew metric. The results for the proposed decoding schemes are validated via Monte Carlo simulations.

In this paper we discuss a reduced basis method for linear evolution PDEs, which is based on the application of the Laplace transform. The main advantage of this approach consists in the fact that, differently from time stepping methods, like Runge-Kutta integrators, the Laplace transform allows to compute the solution directly at a given instant, which can be done by approximating the contour integral associated to the inverse Laplace transform by a suitable quadrature formula. In terms of the reduced basis methodology, this determines a significant improvement in the reduction phase - like the one based on the classical proper orthogonal decomposition (POD) - since the number of vectors to which the decomposition applies is drastically reduced as it does not contain all intermediate solutions generated along an integration grid by a time stepping method. We show the effectiveness of the method by some illustrative parabolic PDEs arising from finance and also provide some evidence that the method we propose, when applied to a simple advection equation, does not suffer the problem of slow decay of singular values which instead affects methods based on time integration of the Cauchy problem arising from space discretization.

We propose two generic methods for improving semi-supervised learning (SSL). The first integrates weight perturbation (WP) into existing "consistency regularization" (CR) based methods. We implement WP by leveraging variational Bayesian inference (VBI). The second method proposes a novel consistency loss called "maximum uncertainty regularization" (MUR). While most consistency losses act on perturbations in the vicinity of each data point, MUR actively searches for "virtual" points situated beyond this region that cause the most uncertain class predictions. This allows MUR to impose smoothness on a wider area in the input-output manifold. Our experiments show clear improvements in classification errors of various CR based methods when they are combined with VBI or MUR or both.

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.

We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.

We reinterpreting the variational inference in a new perspective. Via this way, we can easily prove that EM algorithm, VAE, GAN, AAE, ALI(BiGAN) are all special cases of variational inference. The proof also reveals the loss of standard GAN is incomplete and it explains why we need to train GAN cautiously. From that, we find out a regularization term to improve stability of GAN training.

Owing to the recent advances in "Big Data" modeling and prediction tasks, variational Bayesian estimation has gained popularity due to their ability to provide exact solutions to approximate posteriors. One key technique for approximate inference is stochastic variational inference (SVI). SVI poses variational inference as a stochastic optimization problem and solves it iteratively using noisy gradient estimates. It aims to handle massive data for predictive and classification tasks by applying complex Bayesian models that have observed as well as latent variables. This paper aims to decentralize it allowing parallel computation, secure learning and robustness benefits. We use Alternating Direction Method of Multipliers in a top-down setting to develop a distributed SVI algorithm such that independent learners running inference algorithms only require sharing the estimated model parameters instead of their private datasets. Our work extends the distributed SVI-ADMM algorithm that we first propose, to an ADMM-based networked SVI algorithm in which not only are the learners working distributively but they share information according to rules of a graph by which they form a network. This kind of work lies under the umbrella of `deep learning over networks' and we verify our algorithm for a topic-modeling problem for corpus of Wikipedia articles. We illustrate the results on latent Dirichlet allocation (LDA) topic model in large document classification, compare performance with the centralized algorithm, and use numerical experiments to corroborate the analytical results.

北京阿比特科技有限公司