We present a novel outdoor navigation algorithm to generate stable and efficient actions to navigate a robot to reach a goal. We use a multi-stage training pipeline and show that our approach produces policies that result in stable and reliable robot navigation on complex terrains. Based on the Proximal Policy Optimization (PPO) algorithm, we developed a novel method to achieve multiple capabilities for outdoor navigation tasks, namely alleviating the robot's drifting, keeping the robot stable on bumpy terrains, avoiding climbing on hills with steep elevation changes, and avoiding collisions. Our training process mitigates the reality (sim-to-real) gap by introducing generalized environmental and robotic parameters and training with rich features of Lidar perception in a high-fidelity Unity simulator. We evaluate our method in both simulation and real world environments using Clearpath Husky and Jackal robots. Further, we compare our method against the state-of-the-art approaches and observe that, in the real world it improves stability by at least 30.7% on uneven terrains, reduces drifting by 8.08% and decreases the elevation changes by 14.75%.
Safety has been recognized as the central obstacle to preventing the use of reinforcement learning (RL) for real-world applications. Different methods have been developed to deal with safety concerns in RL. However, learning reliable RL-based solutions usually require a large number of interactions with the environment. Likewise, how to improve the learning efficiency, specifically, how to utilize transfer learning for safe reinforcement learning, has not been well studied. In this work, we propose an adaptive aggregation framework for safety-critical control. Our method comprises two key techniques: 1) we learn to transfer the safety knowledge by aggregating the multiple source tasks and a target task through the attention network; 2) we separate the goal of improving task performance and reducing constraint violations by utilizing a safeguard. Experiment results demonstrate that our algorithm can achieve fewer safety violations while showing better data efficiency compared with several baselines.
Federated Learning (FL) is a distributed machine learning framework to alleviate the data silos, where decentralized clients collaboratively learn a global model without sharing their private data. However, the clients' Non-Independent and Identically Distributed (Non-IID) data negatively affect the trained model, and clients with different numbers of local updates may cause significant gaps to the local gradients in each communication round. In this paper, we propose a Federated Vectorized Averaging (FedVeca) method to address the above problem on Non-IID data. Specifically, we set a novel objective for the global model which is related to the local gradients. The local gradient is defined as a bi-directional vector with step size and direction, where the step size is the number of local updates and the direction is divided into positive and negative according to our definition. In FedVeca, the direction is influenced by the step size, thus we average the bi-directional vectors to reduce the effect of different step sizes. Then, we theoretically analyze the relationship between the step sizes and the global objective, and obtain upper bounds on the step sizes per communication round. Based on the upper bounds, we design an algorithm for the server and the client to adaptively adjusts the step sizes that make the objective close to the optimum. Finally, we conduct experiments on different datasets, models and scenarios by building a prototype system, and the experimental results demonstrate the effectiveness and efficiency of the FedVeca method.
Among Bayesian methods, Monte-Carlo dropout provides principled tools for evaluating the epistemic uncertainty of neural networks. Its popularity recently led to seminal works that proposed activating the dropout layers only during inference for evaluating uncertainty. This approach, which we call dropout injection, provides clear benefits over its traditional counterpart (which we call embedded dropout) since it allows one to obtain a post hoc uncertainty measure for any existing network previously trained without dropout, avoiding an additional, time-consuming training process. Unfortunately, no previous work compared injected and embedded dropout; therefore, we provide the first thorough investigation, focusing on regression problems. The main contribution of our work is to provide guidelines on the effective use of injected dropout so that it can be a practical alternative to the current use of embedded dropout. In particular, we show that its effectiveness strongly relies on a suitable scaling of the corresponding uncertainty measure, and we discuss the trade-off between negative log-likelihood and calibration error as a function of the scale factor. Experimental results on UCI data sets and crowd counting benchmarks support our claim that dropout injection can effectively behave as a competitive post hoc uncertainty quantification technique.
We study offline multi-agent reinforcement learning (RL) in Markov games, where the goal is to learn an approximate equilibrium -- such as Nash equilibrium and (Coarse) Correlated Equilibrium -- from an offline dataset pre-collected from the game. Existing works consider relatively restricted tabular or linear models and handle each equilibria separately. In this work, we provide the first framework for sample-efficient offline learning in Markov games under general function approximation, handling all 3 equilibria in a unified manner. By using Bellman-consistent pessimism, we obtain interval estimation for policies' returns, and use both the upper and the lower bounds to obtain a relaxation on the gap of a candidate policy, which becomes our optimization objective. Our results generalize prior works and provide several additional insights. Importantly, we require a data coverage condition that improves over the recently proposed "unilateral concentrability". Our condition allows selective coverage of deviation policies that optimally trade-off between their greediness (as approximate best responses) and coverage, and we show scenarios where this leads to significantly better guarantees. As a new connection, we also show how our algorithmic framework can subsume seemingly different solution concepts designed for the special case of two-player zero-sum games.
The integration of discrete algorithmic components in deep learning architectures has numerous applications. Recently, Implicit Maximum Likelihood Estimation (IMLE, Niepert, Minervini, and Franceschi 2021), a class of gradient estimators for discrete exponential family distributions, was proposed by combining implicit differentiation through perturbation with the path-wise gradient estimator. However, due to the finite difference approximation of the gradients, it is especially sensitive to the choice of the finite difference step size, which needs to be specified by the user. In this work, we present Adaptive IMLE (AIMLE), the first adaptive gradient estimator for complex discrete distributions: it adaptively identifies the target distribution for IMLE by trading off the density of gradient information with the degree of bias in the gradient estimates. We empirically evaluate our estimator on synthetic examples, as well as on Learning to Explain, Discrete Variational Auto-Encoders, and Neural Relational Inference tasks. In our experiments, we show that our adaptive gradient estimator can produce faithful estimates while requiring orders of magnitude fewer samples than other gradient estimators.
Achieving highly accurate dynamic or simulator models that are close to the real robot can facilitate model-based controls (e.g., model predictive control or linear-quadradic regulators), model-based trajectory planning (e.g., trajectory optimization), and decrease the amount of learning time necessary for reinforcement learning methods. Thus, the objective of this work is to learn the residual errors between a dynamic and/or simulator model and the real robot. This is achieved using a neural network, where the parameters of a neural network are updated through an Unscented Kalman Filter (UKF) formulation. Using this method, we model these residual errors with only small amounts of data -- a necessity as we improve the simulator/dynamic model by learning directly from real-world operation. We demonstrate our method on robotic hardware (e.g., manipulator arm, and a wheeled robot), and show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
Zero-shot human-AI coordination holds the promise of collaborating with humans without human data. Prevailing methods try to train the ego agent with a population of partners via self-play. However, these methods suffer from two problems: 1) The diversity of a population with finite partners is limited, thereby limiting the capacity of the trained ego agent to collaborate with a novel human; 2) Current methods only provide a common best response for every partner in the population, which may result in poor zero-shot coordination performance with a novel partner or humans. To address these issues, we first propose the policy ensemble method to increase the diversity of partners in the population, and then develop a context-aware method enabling the ego agent to analyze and identify the partner's potential policy primitives so that it can take different actions accordingly. In this way, the ego agent is able to learn more universal cooperative behaviors for collaborating with diverse partners. We conduct experiments on the Overcooked environment, and evaluate the zero-shot human-AI coordination performance of our method with both behavior-cloned human proxies and real humans. The results demonstrate that our method significantly increases the diversity of partners and enables ego agents to learn more diverse behaviors than baselines, thus achieving state-of-the-art performance in all scenarios. We also open-source a human-AI coordination study framework on the Overcooked for the convenience of future studies.
Display Ads and the generalized assignment problem are two well-studied online packing problems with important applications in ad allocation and other areas. In both problems, ad impressions arrive online and have to be allocated immediately to budget-constrained advertisers. Worst-case algorithms that achieve the ideal competitive ratio are known, but might act overly conservative given the predictable and usually tame nature of real-world input. Given this discrepancy, we develop an algorithm for both problems that incorporate machine-learned predictions and can thus improve the performance beyond the worst-case. Our algorithm is based on the work of Feldman et al. (2009) and similar in nature to Mahdian et al. (2007) who were the first to develop a learning-augmented algorithm for the related, but more structured Ad Words problem. We use a novel analysis to show that our algorithm is able to capitalize on a good prediction, while being robust against poor predictions. We experimentally evaluate our algorithm on synthetic and real-world data on a wide range of predictions. Our algorithm is consistently outperforming the worst-case algorithm without predictions.
Unsupervised Domain Adaptation (UDA), which aims to explore the transferrable features from a well-labeled source domain to a related unlabeled target domain, has been widely progressed. Nevertheless, as one of the mainstream, existing adversarial-based methods neglect to filter the irrelevant semantic knowledge, hindering adaptation performance improvement. Besides, they require an additional domain discriminator that strives extractor to generate confused representations, but discrete designing may cause model collapse. To tackle the above issues, we propose Crucial Semantic Classifier-based Adversarial Learning (CSCAL), which pays more attention to crucial semantic knowledge transferring and leverages the classifier to implicitly play the role of domain discriminator without extra network designing. Specifically, in intra-class-wise alignment, a Paired-Level Discrepancy (PLD) is designed to transfer crucial semantic knowledge. Additionally, based on classifier predictions, a Nuclear Norm-based Discrepancy (NND) is formed that considers inter-class-wise information and improves the adaptation performance. Moreover, CSCAL can be effortlessly merged into different UDA methods as a regularizer and dramatically promote their performance.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.