Recently, a myriad of conditional image generation and editing models have been developed to serve different downstream tasks, including text-to-image generation, text-guided image editing, subject-driven image generation, control-guided image generation, etc. However, we observe huge inconsistencies in experimental conditions: datasets, inference, and evaluation metrics - render fair comparisons difficult. This paper proposes ImagenHub, which is a one-stop library to standardize the inference and evaluation of all the conditional image generation models. Firstly, we define seven prominent tasks and curate high-quality evaluation datasets for them. Secondly, we built a unified inference pipeline to ensure fair comparison. Thirdly, we design two human evaluation scores, i.e. Semantic Consistency and Perceptual Quality, along with comprehensive guidelines to evaluate generated images. We train expert raters to evaluate the model outputs based on the proposed metrics. Our human evaluation achieves a high inter-worker agreement of Krippendorff's alpha on 76% models with a value higher than 0.4. We comprehensively evaluated a total of around 30 models and observed three key takeaways: (1) the existing models' performance is generally unsatisfying except for Text-guided Image Generation and Subject-driven Image Generation, with 74% models achieving an overall score lower than 0.5. (2) we examined the claims from published papers and found 83% of them hold with a few exceptions. (3) None of the existing automatic metrics has a Spearman's correlation higher than 0.2 except subject-driven image generation. Moving forward, we will continue our efforts to evaluate newly published models and update our leaderboard to keep track of the progress in conditional image generation.
In the field of medical imaging, the scarcity of large-scale datasets due to privacy restrictions stands as a significant barrier to develop large models for medical. To address this issue, we introduce SynFundus-1M, a high-quality synthetic dataset with over 1 million retinal fundus images and extensive disease and pathologies annotations, which is generated by a Denoising Diffusion Probabilistic Model. The SynFundus-Generator and SynFundus-1M achieve superior Frechet Inception Distance (FID) scores compared to existing methods on main-stream public real datasets. Furthermore, the ophthalmologists evaluation validate the difficulty in discerning these synthetic images from real ones, confirming the SynFundus-1M's authenticity. Through extensive experiments, we demonstrate that both CNN and ViT can benifit from SynFundus-1M by pretraining or training directly. Compared to datasets like ImageNet or EyePACS, models train on SynFundus-1M not only achieve better performance but also faster convergence on various downstream tasks.
Graph auto-encoders are widely used to construct graph representations in Euclidean vector spaces. However, it has already been pointed out empirically that linear models on many tasks can outperform graph auto-encoders. In our work, we prove that the solution space induced by graph auto-encoders is a subset of the solution space of a linear map. This demonstrates that linear embedding models have at least the representational power of graph auto-encoders based on graph convolutional networks. So why are we still using nonlinear graph auto-encoders? One reason could be that actively restricting the linear solution space might introduce an inductive bias that helps improve learning and generalization. While many researchers believe that the nonlinearity of the encoder is the critical ingredient towards this end, we instead identify the node features of the graph as a more powerful inductive bias. We give theoretical insights by introducing a corresponding bias in a linear model and analyzing the change in the solution space. Our experiments are aligned with other empirical work on this question and show that the linear encoder can outperform the nonlinear encoder when using feature information.
Many approaches have been proposed to use diffusion models to augment training datasets for downstream tasks, such as classification. However, diffusion models are themselves trained on large datasets, often with noisy annotations, and it remains an open question to which extent these models contribute to downstream classification performance. In particular, it remains unclear if they generalize enough to improve over directly using the additional data of their pre-training process for augmentation. We systematically evaluate a range of existing methods to generate images from diffusion models and study new extensions to assess their benefit for data augmentation. Personalizing diffusion models towards the target data outperforms simpler prompting strategies. However, using the pre-training data of the diffusion model alone, via a simple nearest-neighbor retrieval procedure, leads to even stronger downstream performance. Our study explores the potential of diffusion models in generating new training data, and surprisingly finds that these sophisticated models are not yet able to beat a simple and strong image retrieval baseline on simple downstream vision tasks.
The race to develop image generation models is intensifying, with a rapid increase in the number of text-to-image models available. This is coupled with growing public awareness of these technologies. Though other generative AI models--notably, large language models--have received recent critical attention for the social and other non-technical issues they raise, there has been relatively little comparable examination of image generation models. This paper reports on a novel, comprehensive categorization of the social issues associated with image generation models. At the intersection of machine learning and the social sciences, we report the results of a survey of the literature, identifying seven issue clusters arising from image generation models: data issues, intellectual property, bias, privacy, and the impacts on the informational, cultural, and natural environments. We situate these social issues in the model life cycle, to aid in considering where potential issues arise, and mitigation may be needed. We then compare these issue clusters with what has been reported for large language models. Ultimately, we argue that the risks posed by image generation models are comparable in severity to the risks posed by large language models, and that the social impact of image generation models must be urgently considered.
Image steganography, the practice of concealing information within another image, traditionally faces security challenges when its methods become publicly known. To counteract this, we introduce a novel private key-based image steganography technique. This approach ensures the security of hidden information, requiring a corresponding private key for access, irrespective of the public knowledge of the steganography method. We present experimental evidence demonstrating our method's effectiveness, showcasing its real-world applicability. Additionally, we identified a critical challenge in the invertible image steganography process: the transfer of non-essential, or `garbage', information from the secret to the host pipeline. To address this, we introduced the decay weight to control the information transfer, filtering out irrelevant data and enhancing the performance of image steganography. Our code is publicly accessible at //github.com/yanghangAI/DKiS, and a practical demonstration is available at //yanghang.site/hidekey.
Compiling large datasets from published resources, such as archaeological find catalogues presents fundamental challenges: identifying relevant content and manually recording it is a time-consuming, repetitive and error-prone task. For the data to be useful, it must be of comparable quality and adhere to the same recording standards, which is hardly ever the case in archaeology. Here, we present a new data collection method exploiting recent advances in Artificial Intelligence. Our software uses an object detection neural network combined with further classification networks to speed up, automate, and standardise data collection from legacy resources, such as archaeological drawings and photographs in large unsorted PDF files. The AI-assisted workflow detects common objects found in archaeological catalogues, such as graves, skeletons, ceramics, ornaments, stone tools and maps, and spatially relates and analyses these objects on the page to extract real-life attributes, such as the size and orientation of a grave based on the north arrow and the scale. A graphical interface allows for and assists with manual validation. We demonstrate the benefits of this approach by collecting a range of shapes and numerical attributes from richly-illustrated archaeological catalogues, and benchmark it in a real-world experiment with ten users. Moreover, we record geometric whole-outlines through contour detection, an alternative to landmark-based geometric morphometrics not achievable by hand.
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.
Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.
Nowadays, the Convolutional Neural Networks (CNNs) have achieved impressive performance on many computer vision related tasks, such as object detection, image recognition, image retrieval, etc. These achievements benefit from the CNNs outstanding capability to learn the input features with deep layers of neuron structures and iterative training process. However, these learned features are hard to identify and interpret from a human vision perspective, causing a lack of understanding of the CNNs internal working mechanism. To improve the CNN interpretability, the CNN visualization is well utilized as a qualitative analysis method, which translates the internal features into visually perceptible patterns. And many CNN visualization works have been proposed in the literature to interpret the CNN in perspectives of network structure, operation, and semantic concept. In this paper, we expect to provide a comprehensive survey of several representative CNN visualization methods, including Activation Maximization, Network Inversion, Deconvolutional Neural Networks (DeconvNet), and Network Dissection based visualization. These methods are presented in terms of motivations, algorithms, and experiment results. Based on these visualization methods, we also discuss their practical applications to demonstrate the significance of the CNN interpretability in areas of network design, optimization, security enhancement, etc.