亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We determine all functional closure properties of finite $\mathbb{N}$-weighted automata, even all multivariate ones, and in particular all multivariate polynomials. We also determine all univariate closure properties in the promise setting, and all multivariate closure properties under certain assumptions on the promise, in particular we determine all multivariate closure properties where the output vector lies on a monotone algebraic graph variety.

相關內容

This study demonstrates that the boundedness of the \( H^\infty \)-calculus for the negative discrete Laplace operator is independent of the spatial mesh size. Using this result, we deduce the discrete stochastic maximal \( L^p \)-regularity estimate for a spatial semidiscretization. Furthermore, we derive (nearly) sharp error estimates for the semidiscretization under the general spatial \( L^q \)-norms.

A wide range of (multivariate) temporal (1D) and spatial (2D) data analysis tasks, such as grouping vehicle sensor trajectories, can be formulated as clustering with given metric constraints. Existing metric-constrained clustering algorithms overlook the rich correlation between feature similarity and metric distance, i.e., metric autocorrelation. The model-based variations of these clustering algorithms (e.g. TICC and STICC) achieve SOTA performance, yet suffer from computational instability and complexity by using a metric-constrained Expectation-Maximization procedure. In order to address these two problems, we propose a novel clustering algorithm, MC-GTA (Model-based Clustering via Goodness-of-fit Tests with Autocorrelations). Its objective is only composed of pairwise weighted sums of feature similarity terms (square Wasserstein-2 distance) and metric autocorrelation terms (a novel multivariate generalization of classic semivariogram). We show that MC-GTA is effectively minimizing the total hinge loss for intra-cluster observation pairs not passing goodness-of-fit tests, i.e., statistically not originating from the same distribution. Experiments on 1D/2D synthetic and real-world datasets demonstrate that MC-GTA successfully incorporates metric autocorrelation. It outperforms strong baselines by large margins (up to 14.3% in ARI and 32.1% in NMI) with faster and stabler optimization (>10x speedup).

The $2$-Wasserstein distance is sensitive to minor geometric differences between distributions, making it a very powerful dissimilarity metric. However, due to this sensitivity, a small outlier mass can also cause a significant increase in the $2$-Wasserstein distance between two similar distributions. Similarly, sampling discrepancy can cause the empirical $2$-Wasserstein distance on $n$ samples in $\mathbb{R}^2$ to converge to the true distance at a rate of $n^{-1/4}$, which is significantly slower than the rate of $n^{-1/2}$ for $1$-Wasserstein distance. We introduce a new family of distances parameterized by $k \ge 0$, called $k$-RPW that is based on computing the partial $2$-Wasserstein distance. We show that (1) $k$-RPW satisfies the metric properties, (2) $k$-RPW is robust to small outlier mass while retaining the sensitivity of $2$-Wasserstein distance to minor geometric differences, and (3) when $k$ is a constant, $k$-RPW distance between empirical distributions on $n$ samples in $\mathbb{R}^2$ converges to the true distance at a rate of $n^{-1/3}$, which is faster than the convergence rate of $n^{-1/4}$ for the $2$-Wasserstein distance. Using the partial $p$-Wasserstein distance, we extend our distance to any $p \in [1,\infty]$. By setting parameters $k$ or $p$ appropriately, we can reduce our distance to the total variation, $p$-Wasserstein, and the L\'evy-Prokhorov distances. Experiments show that our distance function achieves higher accuracy in comparison to the $1$-Wasserstein, $2$-Wasserstein, and TV distances for image retrieval tasks on noisy real-world data sets.

We consider a distributed setup for reinforcement learning, where each agent has a copy of the same Markov Decision Process but transitions are sampled from the corresponding Markov chain independently by each agent. We show that in this setting, we can achieve a linear speedup for TD($\lambda$), a family of popular methods for policy evaluation, in the sense that $N$ agents can evaluate a policy $N$ times faster provided the target accuracy is small enough. Notably, this speedup is achieved by ``one shot averaging,'' a procedure where the agents run TD($\lambda$) with Markov sampling independently and only average their results after the final step. This significantly reduces the amount of communication required to achieve a linear speedup relative to previous work.

State-space graphical models and the variational autoencoder framework provide a principled apparatus for learning dynamical systems from data. State-of-the-art probabilistic approaches are often able to scale to large problems at the cost of flexibility of the variational posterior or expressivity of the dynamics model. However, those consolidations can be detrimental if the ultimate goal is to learn a generative model capable of explaining the spatiotemporal structure of the data and making accurate forecasts. We introduce a low-rank structured variational autoencoding framework for nonlinear Gaussian state-space graphical models capable of capturing dense covariance structures that are important for learning dynamical systems with predictive capabilities. Our inference algorithm exploits the covariance structures that arise naturally from sample based approximate Gaussian message passing and low-rank amortized posterior updates -- effectively performing approximate variational smoothing with time complexity scaling linearly in the state dimensionality. In comparisons with other deep state-space model architectures our approach consistently demonstrates the ability to learn a more predictive generative model. Furthermore, when applied to neural physiological recordings, our approach is able to learn a dynamical system capable of forecasting population spiking and behavioral correlates from a small portion of single trials.

The importance of symmetries has recently been recognized in quantum machine learning from the simple motto: if a task exhibits a symmetry (given by a group $\mathfrak{G}$), the learning model should respect said symmetry. This can be instantiated via $\mathfrak{G}$-equivariant Quantum Neural Networks (QNNs), i.e., parametrized quantum circuits whose gates are generated by operators commuting with a given representation of $\mathfrak{G}$. In practice, however, there might be additional restrictions to the types of gates one can use, such as being able to act on at most $k$ qubits. In this work we study how the interplay between symmetry and $k$-bodyness in the QNN generators affect its expressiveness for the special case of $\mathfrak{G}=S_n$, the symmetric group. Our results show that if the QNN is generated by one- and two-body $S_n$-equivariant gates, the QNN is semi-universal but not universal. That is, the QNN can generate any arbitrary special unitary matrix in the invariant subspaces, but has no control over the relative phases between them. Then, we show that in order to reach universality one needs to include $n$-body generators (if $n$ is even) or $(n-1)$-body generators (if $n$ is odd). As such, our results brings us a step closer to better understanding the capabilities and limitations of equivariant QNNs.

Photorealistic 3D reconstruction of street scenes is a critical technique for developing real-world simulators for autonomous driving. Despite the efficacy of Neural Radiance Fields (NeRF) for driving scenes, 3D Gaussian Splatting (3DGS) emerges as a promising direction due to its faster speed and more explicit representation. However, most existing street 3DGS methods require tracked 3D vehicle bounding boxes to decompose the static and dynamic elements for effective reconstruction, limiting their applications for in-the-wild scenarios. To facilitate efficient 3D scene reconstruction without costly annotations, we propose a self-supervised street Gaussian ($\textit{S}^3$Gaussian) method to decompose dynamic and static elements from 4D consistency. We represent each scene with 3D Gaussians to preserve the explicitness and further accompany them with a spatial-temporal field network to compactly model the 4D dynamics. We conduct extensive experiments on the challenging Waymo-Open dataset to evaluate the effectiveness of our method. Our $\textit{S}^3$Gaussian demonstrates the ability to decompose static and dynamic scenes and achieves the best performance without using 3D annotations. Code is available at: //github.com/nnanhuang/S3Gaussian/.

We incorporate strong negation in the theory of computable functionals TCF, a common extension of Plotkin's PCF and G\"{o}del's system $\mathbf{T}$, by defining simultaneously strong negation $A^{\mathbf{N}}$ of a formula $A$ and strong negation $P^{\mathbf{N}}$ of a predicate $P$ in TCF. As a special case of the latter, we get strong negation of an inductive and a coinductive predicate of TCF. We prove appropriate versions of the Ex falso quodlibet and of double negation elimination for strong negation in TCF. We introduce the so-called tight formulas of TCF i.e., formulas implied from the weak negation of their strong negation, and the relative tight formulas. We present various case-studies and examples, which reveal the naturality of our definition of strong negation in TCF and justify the use of TCF as a formal system for a large part of Bishop-style constructive mathematics.

In the current note we consider matrix-sequences $\{B_{n,t}\}_n$ of increasing sizes depending on $n$ and equipped with a parameter $t>0$. For every fixed $t>0$, we assume that each $\{B_{n,t}\}_n$ possesses a canonical spectral/singular values symbol $f_t$ defined on $D_t\subset \R^{d}$ of finite measure, $d\ge 1$. Furthermore, we assume that $ \{ \{ B_{n,t}\} : \, t > 0 \} $ is an approximating class of sequences (a.c.s.) for $ \{ A_n \} $ and that $ \bigcup_{t > 0} D_t = D $ with $ D_{t + 1} \supset D_t $. Under such assumptions and via the notion of a.c.s, we prove results on the canonical distributions of $ \{ A_n \} $, whose symbol, when it exists, can be defined on the, possibly unbounded, domain $D$ of finite or even infinite measure. We then extend the concept of a.c.s. to the case where the approximating sequence $ \{ B_{n,t}\}_n $ has possibly a different dimension than the one of $ \{ A_n\} $. This concept seems to be particularly natural when dealing, e.g., with the approximation both of a partial differential equation (PDE) and of its (possibly unbounded, or moving) domain $D$, using an exhausting sequence of domains $\{ D_t \}$. Examples coming from approximated PDEs/FDEs with either moving or unbounded domains are presented in connection with the classical and the new notion of a.c.s., while numerical tests and a list of open questions conclude the present work.

We propose an approximate Thompson sampling algorithm that learns linear quadratic regulators (LQR) with an improved Bayesian regret bound of $O(\sqrt{T})$. Our method leverages Langevin dynamics with a meticulously designed preconditioner as well as a simple excitation mechanism. We show that the excitation signal induces the minimum eigenvalue of the preconditioner to grow over time, thereby accelerating the approximate posterior sampling process. Moreover, we identify nontrivial concentration properties of the approximate posteriors generated by our algorithm. These properties enable us to bound the moments of the system state and attain an $O(\sqrt{T})$ regret bound without the unrealistic restrictive assumptions on parameter sets that are often used in the literature.

北京阿比特科技有限公司