Robotic manipulation can benefit from wrist-mounted force/torque (F/T) sensors, but conventional F/T sensors can be expensive, difficult to install, and damaged by high loads. We present Visual Force/Torque Sensing (VFTS), a method that visually estimates the 6-axis F/T measurement that would be reported by a conventional F/T sensor. In contrast to approaches that sense loads using internal cameras placed behind soft exterior surfaces, our approach uses an external camera with a fisheye lens that observes a soft gripper. VFTS includes a deep learning model that takes a single RGB image as input and outputs a 6-axis F/T estimate. We trained the model with sensor data collected while teleoperating a robot (Stretch RE1 from Hello Robot Inc.) to perform manipulation tasks. VFTS outperformed F/T estimates based on motor currents, generalized to a novel home environment, and supported three autonomous tasks relevant to healthcare: grasping a blanket, pulling a blanket over a manikin, and cleaning a manikin's limbs. VFTS also performed well with a manually operated pneumatic gripper. Overall, our results suggest that an external camera observing a soft gripper can perform useful visual force/torque sensing for a variety of manipulation tasks.
Many robotic surgical systems have been developed with micro-sized biopsy forceps for tissue manipulation. However, these systems often lack force sensing at the tool side. This paper presents a vision-based force sensing method for micro-sized biopsy forceps. A miniature sensing module adaptive to common biopsy forceps is proposed, consisting of a flexure, a camera, and a customised target. The deformation of the flexure is obtained by the camera estimating the pose variation of the top-mounted target. Then, the external force applied to the sensing module is calculated using the flexure's displacement and stiffness matrix. Integrating the sensing module into the biopsy forceps, in conjunction with a single-axial force sensor at the proximal end, we equip the forceps with haptic sensing capabilities. Mathematical equations are derived to estimate the multi-modal force sensing of the haptics-enabled forceps, including pushing/pulling forces (Mode-I) and grasping forces (Mode-II). A series of experiments on phantoms and ex vivo tissues are conducted to verify the feasibility of the proposed design and method. Results indicate that the haptics-enabled forceps can achieve multi-modal force estimation effectively and potentially realize autonomous robotic tissue grasping procedures with controlled forces.
Most recent 6D object pose methods use 2D optical flow to refine their results. However, the general optical flow methods typically do not consider the target's 3D shape information during matching, making them less effective in 6D object pose estimation. In this work, we propose a shape-constraint recurrent matching framework for 6D object pose estimation. We first compute a pose-induced flow based on the displacement of 2D reprojection between the initial pose and the currently estimated pose, which embeds the target's 3D shape implicitly. Then we use this pose-induced flow to construct the correlation map for the following matching iterations, which reduces the matching space significantly and is much easier to learn. Furthermore, we use networks to learn the object pose based on the current estimated flow, which facilitates the computation of the pose-induced flow for the next iteration and yields an end-to-end system for object pose. Finally, we optimize the optical flow and object pose simultaneously in a recurrent manner. We evaluate our method on three challenging 6D object pose datasets and show that it outperforms the state of the art significantly in both accuracy and efficiency.
Collaborative robots must simultaneously be safe enough to operate in close proximity to human operators and powerful enough to assist users in industrial tasks such as lifting heavy equipment. The requirement for safety necessitates that collaborative robots are designed with low-powered actuators. However, some industrial tasks may require the robot to have high payload capacity and/or long reach. For collaborative robot designs to be successful, they must find ways of addressing these conflicting design requirements. One promising strategy for navigating this tradeoff is through the use of static balancing mechanisms to offset the robot's self weight, thus enabling the selection of lower-powered actuators. In this paper, we introduce a novel, 2 degree of freedom static balancing mechanism based on spring-loaded, wire-wrapped cams. We also present an optimization-based cam design method that guarantees the cams stay convex, ensures the springs stay below their extensions limits, and minimizes sensitivity to unmodeled deviations from the nominal spring constant. Additionally, we present a model of the effect of friction between the wire and the cam. Lastly, we show experimentally that the torque generated by the cam mechanism matches the torque predicted in our modeling approach. Our results also suggest that the effects of wire-cam friction are significant for non-circular cams.
Real-world time-series datasets are often multivariate with complex dynamics. To capture this complexity, high capacity architectures like recurrent- or attention-based sequential deep learning models have become popular. However, recent work demonstrates that simple univariate linear models can outperform such deep learning models on several commonly used academic benchmarks. Extending them, in this paper, we investigate the capabilities of linear models for time-series forecasting and present Time-Series Mixer (TSMixer), a novel architecture designed by stacking multi-layer perceptrons (MLPs). TSMixer is based on mixing operations along both the time and feature dimensions to extract information efficiently. On popular academic benchmarks, the simple-to-implement TSMixer is comparable to specialized state-of-the-art models that leverage the inductive biases of specific benchmarks. On the challenging and large scale M5 benchmark, a real-world retail dataset, TSMixer demonstrates superior performance compared to the state-of-the-art alternatives. Our results underline the importance of efficiently utilizing cross-variate and auxiliary information for improving the performance of time series forecasting. We present various analyses to shed light into the capabilities of TSMixer. The design paradigms utilized in TSMixer are expected to open new horizons for deep learning-based time series forecasting. The implementation is available at //github.com/google-research/google-research/tree/master/tsmixer
We propose a method for in-hand 3D scanning of an unknown object with a monocular camera. Our method relies on a neural implicit surface representation that captures both the geometry and the appearance of the object, however, by contrast with most NeRF-based methods, we do not assume that the camera-object relative poses are known. Instead, we simultaneously optimize both the object shape and the pose trajectory. As direct optimization over all shape and pose parameters is prone to fail without coarse-level initialization, we propose an incremental approach that starts by splitting the sequence into carefully selected overlapping segments within which the optimization is likely to succeed. We reconstruct the object shape and track its poses independently within each segment, then merge all the segments before performing a global optimization. We show that our method is able to reconstruct the shape and color of both textured and challenging texture-less objects, outperforms classical methods that rely only on appearance features, and that its performance is close to recent methods that assume known camera poses.
Hand tracking is an important aspect of human-computer interaction and has a wide range of applications in extended reality devices. However, current hand motion capture methods suffer from various limitations. For instance, visual-based hand pose estimation is susceptible to self-occlusion and changes in lighting conditions, while IMU-based tracking gloves experience significant drift and are not resistant to external magnetic field interference. To address these issues, we propose a novel and low-cost hand-tracking glove that utilizes several MEMS-ultrasonic sensors attached to the fingers, to measure the distance matrix among the sensors. Our lightweight deep network then reconstructs the hand pose from the distance matrix. Our experimental results demonstrate that this approach is both accurate, size-agnostic, and robust to external interference. We also show the design logic for the sensor selection, sensor configurations, circuit diagram, as well as model architecture.
Most works on joint state and unknown input (UI) estimation require the assumption that the UIs are linear; this is potentially restrictive as it does not hold in many intelligent autonomous systems. To overcome this restriction and circumvent the need to linearize the system, we propose a derivative-free Unknown Input Sigma-point Kalman Filter (SPKF-nUI) where the SPKF is interconnected with a general nonlinear UI estimator that can be implemented via nonlinear optimization and data-driven approaches. The nonlinear UI estimator uses the posterior state estimate which is less susceptible to state prediction error. In addition, we introduce a joint sigma-point transformation scheme to incorporate both the state and UI uncertainties in the estimation of SPKF-nUI. An in-depth stochastic stability analysis proves that the proposed SPKF-nUI yields exponentially converging estimation error bounds under reasonable assumptions. Finally, two case studies are carried out on a simulation-based rigid robot and a physical soft robot, i.e., robots made of soft materials with complex dynamics to validate effectiveness of the proposed filter on nonlinear dynamic systems. Our results demonstrate that the proposed SPKF-nUI achieves the lowest state and UI estimation errors when compared to the existing nonlinear state-UI filters.
We present a novel technique to estimate the 6D pose of objects from single images where the 3D geometry of the object is only given approximately and not as a precise 3D model. To achieve this, we employ a dense 2D-to-3D correspondence predictor that regresses 3D model coordinates for every pixel. In addition to the 3D coordinates, our model also estimates the pixel-wise coordinate error to discard correspondences that are likely wrong. This allows us to generate multiple 6D pose hypotheses of the object, which we then refine iteratively using a highly efficient region-based approach. We also introduce a novel pixel-wise posterior formulation by which we can estimate the probability for each hypothesis and select the most likely one. As we show in experiments, our approach is capable of dealing with extreme visual conditions including overexposure, high contrast, or low signal-to-noise ratio. This makes it a powerful technique for the particularly challenging task of estimating the pose of tumbling satellites for in-orbit robotic applications. Our method achieves state-of-the-art performance on the SPEED+ dataset and has won the SPEC2021 post-mortem competition.
Human-robot collaboration (HRC) is one key component to achieving flexible manufacturing to meet the different needs of customers. However, it is difficult to build intelligent robots that can proactively assist humans in a safe and efficient way due to several challenges.First, it is challenging to achieve efficient collaboration due to diverse human behaviors and data scarcity. Second, it is difficult to ensure interactive safety due to uncertainty in human behaviors. This paper presents an integrated framework for proactive HRC. A robust intention prediction module, which leverages prior task information and human-in-the-loop training, is learned to guide the robot for efficient collaboration. The proposed framework also uses robust safe control to ensure interactive safety under uncertainty. The developed framework is applied to a co-assembly task using a Kinova Gen3 robot. The experiment demonstrates that our solution is robust to environmental changes as well as different human preferences and behaviors. In addition, it improves task efficiency by approximately 15-20%. Moreover, the experiment demonstrates that our solution can guarantee interactive safety during proactive collaboration.
Cutting-edge connected vehicle (CV) technologies have drawn much attention in recent years. The real-time traffic data captured by a CV can be shared with other CVs and data centers so as to open new possibilities for solving diverse transportation problems. However, imagery captured by onboard cameras in a connected environment, are not sufficiently investigated, especially for safety and health-oriented visual perception. In this paper, a bidirectional process of image synthesis and decomposition (BPISD) approach is proposed, and thus a novel self-supervised multi-task learning framework, to simultaneously estimate depth map, atmospheric visibility, airlight, and PM2.5 mass concentration, in which depth map and visibility are considered highly associated with traffic safety, while airlight and PM2.5 mass concentration are directly correlated with human health. Both the training and testing phases of the proposed system solely require a single image as input. Due to the innovative training pipeline, the depth estimation network can manage various levels of visibility conditions and overcome inherent problems in current image-synthesis-based depth estimation, thereby generating high-quality depth maps even in low-visibility situations and further benefiting accurate estimations of visibility, airlight, and PM2.5 mass concentration. Extensive experiments on the synthesized data from the KITTI and real-world data collected in Beijing demonstrate that the proposed method can (1) achieve performance competitive in depth estimation as compared with state-of-the-art methods when taking clear images as input; (2) predict vivid depth map for images contaminated by various levels of haze; and (3) accurately estimate visibility, airlight, and PM2.5 mass concentrations. Beneficial applications can be developed based on the presented work to improve traffic safety, air quality, and public health.