亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the distribution of the {\it matrix product} $G_1 G_2 \cdots G_r$ of $r$ independent Gaussian matrices of various sizes, where $G_i$ is $d_{i-1} \times d_i$, and we denote $p = d_0$, $q = d_r$, and require $d_1 = d_{r-1}$. Here the entries in each $G_i$ are standard normal random variables with mean $0$ and variance $1$. Such products arise in the study of wireless communication, dynamical systems, and quantum transport, among other places. We show that, provided each $d_i$, $i = 1, \ldots, r$, satisfies $d_i \geq C p \cdot q$, where $C \geq C_0$ for a constant $C_0 > 0$ depending on $r$, then the matrix product $G_1 G_2 \cdots G_r$ has variation distance at most $\delta$ to a $p \times q$ matrix $G$ of i.i.d.\ standard normal random variables with mean $0$ and variance $\prod_{i=1}^{r-1} d_i$. Here $\delta \rightarrow 0$ as $C \rightarrow \infty$. Moreover, we show a converse for constant $r$ that if $d_i < C' \max\{p,q\}^{1/2}\min\{p,q\}^{3/2}$ for some $i$, then this total variation distance is at least $\delta'$, for an absolute constant $\delta' > 0$ depending on $C'$ and $r$. This converse is best possible when $p=\Theta(q)$.

相關內容

For every fixed $d \in \mathbb{N}$, we design a data structure that represents a binary $n \times n$ matrix that is $d$-twin-ordered. The data structure occupies $O_d(n)$ bits, which is the least one could hope for, and can be queried for entries of the matrix in time $O_d(\log \log n)$ per query.

In many real-world applications, we are interested in approximating black-box, costly functions as accurately as possible with the smallest number of function evaluations. A complex computer code is an example of such a function. In this work, a Gaussian process (GP) emulator is used to approximate the output of complex computer code. We consider the problem of extending an initial experiment (set of model runs) sequentially to improve the emulator. A sequential sampling approach based on leave-one-out (LOO) cross-validation is proposed that can be easily extended to a batch mode. This is a desirable property since it saves the user time when parallel computing is available. After fitting a GP to training data points, the expected squared LOO (ES-LOO) error is calculated at each design point. ES-LOO is used as a measure to identify important data points. More precisely, when this quantity is large at a point it means that the quality of prediction depends a great deal on that point and adding more samples nearby could improve the accuracy of the GP. As a result, it is reasonable to select the next sample where ES-LOO is maximised. However, ES-LOO is only known at the experimental design and needs to be estimated at unobserved points. To do this, a second GP is fitted to the ES-LOO errors and where the maximum of the modified expected improvement (EI) criterion occurs is chosen as the next sample. EI is a popular acquisition function in Bayesian optimisation and is used to trade-off between local/global search. However, it has a tendency towards exploitation, meaning that its maximum is close to the (current) "best" sample. To avoid clustering, a modified version of EI, called pseudo expected improvement, is employed which is more explorative than EI yet allows us to discover unexplored regions. Our results show that the proposed sampling method is promising.

In this paper, we consider the problem of black-box optimization using Gaussian Process (GP) bandit optimization with a small number of batches. Assuming the unknown function has a low norm in the Reproducing Kernel Hilbert Space (RKHS), we introduce a batch algorithm inspired by batched finite-arm bandit algorithms, and show that it achieves the cumulative regret upper bound $O^\ast(\sqrt{T\gamma_T})$ using $O(\log\log T)$ batches within time horizon $T$, where the $O^\ast(\cdot)$ notation hides dimension-independent logarithmic factors and $\gamma_T$ is the maximum information gain associated with the kernel. This bound is near-optimal for several kernels of interest and improves on the typical $O^\ast(\sqrt{T}\gamma_T)$ bound, and our approach is arguably the simplest among algorithms attaining this improvement. In addition, in the case of a constant number of batches (not depending on $T$), we propose a modified version of our algorithm, and characterize how the regret is impacted by the number of batches, focusing on the squared exponential and Mat\'ern kernels. The algorithmic upper bounds are shown to be nearly minimax optimal via analogous algorithm-independent lower bounds.

Given a property (graph class) $\Pi$, a graph $G$, and an integer $k$, the \emph{$\Pi$-completion} problem consists in deciding whether we can turn $G$ into a graph with the property $\Pi$ by adding at most $k$ edges to $G$. The $\Pi$-completion problem is known to be NP-hard for general graphs when $\Pi$ is the property of being a proper interval graph (PIG). In this work, we study the PIG-completion problem %when $\Pi$ is the class of proper interval graphs (PIG) within different subclasses of chordal graphs. We show that the problem remains NP-complete even when restricted to split graphs. We then turn our attention to positive results and present polynomial time algorithms to solve the PIG-completion problem when the input is restricted to caterpillar and threshold graphs. We also present an efficient algorithm for the minimum co-bipartite-completion for quasi-threshold graphs, which provides a lower bound for the PIG-completion problem within this graph class.

We show that it is provable in PA that there is an arithmetically definable sequence $\{\phi_{n}:n \in \omega\}$ of $\Pi^{0}_{2}$-sentences, such that - PRA+$\{\phi_{n}:n \in \omega\}$ is $\Pi^{0}_{2}$-sound and $\Pi^{0}_{1}$-complete - the length of $\phi_{n}$ is bounded above by a polynomial function of $n$ with positive leading coefficient - PRA+$\phi_{n+1}$ always proves 1-consistency of PRA+$\phi_{n}$. One has that the growth in logical strength is in some sense "as fast as possible", manifested in the fact that the total general recursive functions whose totality is asserted by the true $\Pi^{0}_{2}$-sentences in the sequence are cofinal growth-rate-wise in the set of all total general recursive functions. We then develop an argument which makes use of a sequence of sentences constructed by an application of the diagonal lemma, which are generalisations in a broad sense of Hugh Woodin's "Tower of Hanoi" construction as outlined in his essay "Tower of Hanoi" in Chapter 18 of the anthology "Truth in Mathematics". The argument establishes the result that it is provable in PA that $P \neq NP$. We indicate how to pull the argument all the way down into EFA.

A connected partition is a partition of the vertices of a graph into sets that induce connected subgraphs. Such partitions naturally occur in many application areas such as road networks, and image processing. We consider Balanced Connected Partitions (BCP), where the two classical objectives for BCP are to maximize the weight of the smallest, or minimize the weight of the largest component. We study BCP on c-claw-free graphs, the class of graphs that do not have $K_{1,c}$ as an induced subgraph, and present efficient (c-1)-approximation algorithms for both objectives. In particular, due to the (3-)claw-freeness of line graphs, this also implies a 2-approximations for the edge-partition version of BCP in general graphs. In the 1970s Gy\H{o}ri and Lov\'{a}sz showed for natural numbers $w_1,\dots,w_k$ where $\sum_i w_i$ is the vertex size, that if $G$ is k-connected, then there exist a connected k-partition with part sizes $w_1,\dots,w_k$. However, to this day no polynomial algorithm to compute such partitions exists for k>4. Towards finding such a partition $T_1,\dots, T_k$, we show how to efficiently compute connected partitions that at least approximately meet the target weights, subject to the mild assumption that each $w_i$ is greater than the weight of the heaviest vertex. In particular, we give a 3-approximation for both the lower and the upper bounded version i.e. we guarantee that each $T_i$ has weight at least $\frac{w_i}{3}$ or that each $T_i$ has weight most $3w_i$, respectively. Also, we present a both-side bounded version that produces a connected partition where each $T_i$ has size at least $\frac{w_i}{3}$ and at most $\max(\{r,3\}) w_i$, where $r \geq 1$ is the ratio between the largest and smallest value in $w_1, \dots, w_k$. In particular for the balanced version, i.e.~$w_1=w_2=, \dots,=w_k$, this gives a partition with $\frac{1}{3}w_i \leq w(T_i) \leq 3w_i$.

For a Hermitian matrix $H \in \mathbb C^{n,n}$ and symmetric matrices $S_0, S_1,\ldots,S_k \in \mathbb C^{n,n}$, we consider the problem of computing the supremum of $\left\{ \frac{v^*Hv}{v^*v}:~v\in \mathbb C^{n}\setminus \{0\},\,v^TS_iv=0~\text{for}~i=0,\ldots,k\right\}$. For this, we derive an estimation in the form of minimizing the second largest eigenvalue of a parameter depending Hermitian matrix, which is exact when the eigenvalue at the optimal is simple. The results are then applied to compute the eigenvalue backward errors of higher degree matrix polynomials with T-palindromic, T-antipalindromic, T-even, T-odd, and skew-symmetric structures. The results are illustrated by numerical experiments.

Proximal Policy Optimization (PPO) is a highly popular model-free reinforcement learning (RL) approach. However, in continuous state and actions spaces and a Gaussian policy -- common in computer animation and robotics -- PPO is prone to getting stuck in local optima. In this paper, we observe a tendency of PPO to prematurely shrink the exploration variance, which naturally leads to slow progress. Motivated by this, we borrow ideas from CMA-ES, a black-box optimization method designed for intelligent adaptive Gaussian exploration, to derive PPO-CMA, a novel proximal policy optimization approach that can expand the exploration variance on objective function slopes and shrink the variance when close to the optimum. This is implemented by using separate neural networks for policy mean and variance and training the mean and variance in separate passes. Our experiments demonstrate a clear improvement over vanilla PPO in many difficult OpenAI Gym MuJoCo tasks.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

This paper describes a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image of the matrix, called a sketch. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provably correct. Moreover, each method is accompanied by an informative error bound that allows users to select parameters a priori to achieve a given approximation quality. These claims are supported by numerical experiments with real and synthetic data.

北京阿比特科技有限公司