亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The area under the curve (AUC) of the mean cumulative function (MCF) has recently been introduced as a novel estimand for evaluating treatment effects in recurrent event settings, capturing a totality of evidence in relation to disease progression. While the Lin-Wei-Yang-Ying (LWYY) model is commonly used for analyzing recurrent events, it relies on the proportional rate assumption between treatment arms, which is often violated in practice. In contrast, the AUC under MCFs does not depend on such proportionality assumptions and offers a clinically interpretable measure of treatment effect. To improve the precision of the AUC estimation while preserving its unconditional interpretability, we propose a nonparametric covariate adjustment approach. This approach guarantees efficiency gain compared to unadjusted analysis, as demonstrated by theoretical asymptotic distributions, and is universally applicable to various randomization schemes, including both simple and covariate-adaptive designs. Extensive simulations across different scenarios further support its advantage in increasing statistical power. Our findings highlight the importance of covariate adjustment for the analysis of AUC in recurrent event settings, offering practical guidance for its application in randomized clinical trials.

相關內容

Federated averaging (FedAvg) is the most fundamental algorithm in Federated learning (FL). Previous theoretical results assert that FedAvg convergence and generalization degenerate under heterogeneous clients. However, recent empirical results show that FedAvg can perform well in many real-world heterogeneous tasks. These results reveal an inconsistency between FL theory and practice that is not fully explained. In this paper, we show that common heterogeneity measures contribute to this inconsistency based on rigorous convergence analysis. Furthermore, we introduce a new measure \textit{client consensus dynamics} and prove that \textit{FedAvg can effectively handle client heterogeneity when an appropriate aggregation strategy is used}. Building on this theoretical insight, we present a simple and effective FedAvg variant termed FedAWARE. Extensive experiments on three datasets and two modern neural network architectures demonstrate that FedAWARE ensures faster convergence and better generalization in heterogeneous client settings. Moreover, our results show that FedAWARE can significantly enhance the generalization performance of advanced FL algorithms when used as a plug-in module.

The multiple scattering theory (MST) is a Green's function method that has been widely used in electronic structure calculations for crystalline disordered systems. The key property of the MST method is the scattering path matrix (SPM) that characterizes the Green's function within a local solution representation. This paper studies various approximations of the SPM, under the condition that an appropriate reference is used for perturbation. In particular, we justify the convergence of the SPM approximations with respect to the size of scattering region and the length of scattering path, which are the central numerical parameters to achieve a linear-scaling MST method. We present numerical experiments on several typical systems to support the theory.

Kolmogorov-Arnold Networks (KANs) have recently emerged as a novel approach to function approximation, demonstrating remarkable potential in various domains. Despite their theoretical promise, the robustness of KANs under adversarial conditions has yet to be thoroughly examined. In this paper we explore the adversarial robustness of KANs, with a particular focus on image classification tasks. We assess the performance of KANs against standard white box and black-box adversarial attacks, comparing their resilience to that of established neural network architectures. Our experimental evaluation encompasses a variety of standard image classification benchmark datasets and investigates both fully connected and convolutional neural network architectures, of three sizes: small, medium, and large. We conclude that small- and medium-sized KANs (either fully connected or convolutional) are not consistently more robust than their standard counterparts, but that large-sized KANs are, by and large, more robust. This comprehensive evaluation of KANs in adversarial scenarios offers the first in-depth analysis of KAN security, laying the groundwork for future research in this emerging field.

We introduce a new erasure decoder that applies to arbitrary quantum LDPC codes. Dubbed the cluster decoder, it generalizes the decomposition idea of Vertical-Horizontal (VH) decoding introduced by Connelly et al. in 2022. Like the VH decoder, the idea is to first run the peeling decoder and then post-process the resulting stopping set. The cluster decoder breaks the stopping set into a tree of clusters which can be solved sequentially via Gaussian Elimination (GE). By allowing clusters of unconstrained size, this decoder achieves maximum-likelihood (ML) performance with reduced complexity compared with full GE. When GE is applied only to clusters whose sizes are less than a constant, the performance is degraded but the complexity becomes linear in the block length. Our simulation results show that, for hypergraph product codes, the cluster decoder with constant cluster size achieves near-ML performance similar to VH decoding in the low-erasure-rate regime. For the general quantum LDPC codes we studied, the cluster decoder can be used to estimate the ML performance curve with reduced complexity over a wide range of erasure rates.

A multichannel extension to the RVQGAN neural coding method is proposed, and realized for data-driven compression of third-order Ambisonics audio. The input- and output layers of the generator and discriminator models are modified to accept multiple (16) channels without increasing the model bitrate. We also propose a loss function for accounting for spatial perception in immersive reproduction, and transfer learning from single-channel models. Listening test results with 7.1.4 immersive playback show that the proposed extension is suitable for coding scene-based, 16-channel Ambisonics content with good quality at 16 kbps when trained and tested on the EigenScape database. The model has potential applications for learning other types of content and multichannel formats.

We consider the numerical approximation of the stochastic complex Ginzburg-Landau equation with additive noise on the one dimensional torus. The complex nature of the equation means that many of the standard approaches developed for stochastic partial differential equations can not be directly applied. We use an energy approach to prove an existence and uniqueness result as well to obtain moment bounds on the stochastic PDE before introducing our numerical discretization. For such a well studied deterministic equation it is perhaps surprising that its numerical approximation in the stochastic setting has not been considered before. Our method is based on a spectral discretization in space and a Lie-Trotter splitting method in time. We obtain moment bounds for the numerical method before proving our main result: strong convergence on a set of arbitrarily large probability. From this we obtain a result on convergence in probability. We conclude with some numerical experiments that illustrate the effectiveness of our method.

Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it is fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information.

北京阿比特科技有限公司