亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this article, we combine Sweedler's classic theory of measuring coalgebras -- by which $k$-algebras are enriched in $k$-coalgebras for $k$ a field -- with the theory of W-types -- by which the categorical semantics of inductive data types in functional programming languages are understood. In our main theorem, we find that under some hypotheses, algebras of an endofunctor are enriched in coalgebras of the same endofunctor, and we find polynomial endofunctors provide many interesting examples of this phenomenon. We then generalize the notion of initial algebra of an endofunctor using this enrichment, thus generalizing the notion of W-type. This article is an extended version of arXiv:2303.16793, it adds expository introductions to the original theories of measuring coalgebras and W-types along with some improvements to the main theory and many explicitly worked examples.

相關內容

We prove that the Weihrauch degree of the problem of finding a bad sequence in a non-well quasi order ($\mathsf{BS}$) is strictly above that of finding a descending sequence in an ill-founded linear order ($\mathsf{DS}$). This corrects our mistaken claim in arXiv:2010.03840, which stated that they are Weihrauch equivalent. We prove that K\"onig's lemma $\mathsf{KL}$ and the problem $\mathsf{wList}_{2^{\mathbb{N}},\leq\omega}$ of enumerating a given non-empty countable closed subset of $2^\mathbb{N}$ are not Weihrauch reducible to $\mathsf{DS}$ either, resolving two main open questions raised in arXiv:2010.03840.

Tools from optimal transport (OT) theory have recently been used to define a notion of quantile function for directional data. In practice, regularization is mandatory for applications that require out-of-sample estimates. To this end, we introduce a regularized estimator built from entropic optimal transport, by extending the definition of the entropic map to the spherical setting. We propose a stochastic algorithm to directly solve a continuous OT problem between the uniform distribution and a target distribution, by expanding Kantorovich potentials in the basis of spherical harmonics. In addition, we define the directional Monge-Kantorovich depth, a companion concept for OT-based quantiles. We show that it benefits from desirable properties related to Liu-Zuo-Serfling axioms for the statistical analysis of directional data. Building on our regularized estimators, we illustrate the benefits of our methodology for data analysis.

We prove a lower bound on the communication complexity of computing the $n$-fold xor of an arbitrary function $f$, in terms of the communication complexity and rank of $f$. We prove that $D(f^{\oplus n}) \geq n \cdot \Big(\frac{\Omega(D(f))}{\log \mathsf{rk}(f)} -\log \mathsf{rk}(f)\Big )$, where here $D(f), D(f^{\oplus n})$ represent the deterministic communication complexity, and $\mathsf{rk}(f)$ is the rank of $f$. Our methods involve a new way to use information theory to reason about deterministic communication complexity.

In the $K_r$-Cover problem, given a graph $G$ and an integer $k$ one has to decide if there exists a set of at most $k$ vertices whose removal destroys all $r$-cliques of $G$. In this paper we give an algorithm for $K_r$-Cover that runs in subexponential FPT time on graph classes satisfying two simple conditions related to cliques and treewidth. As an application we show that our algorithm solves $K_r$-Cover in time * $2^{O_r\left (k^{(r+1)/(r+2)}\log k \right)} \cdot n^{O_r(1)}$ in pseudo-disk graphs and map-graphs; * $2^{O_{t,r}(k^{2/3}\log k)} \cdot n^{O_r(1)}$ in $K_{t,t}$-subgraph-free string graphs; and * $2^{O_{H,r}(k^{2/3}\log k)} \cdot n^{O_r(1)}$ in $H$-minor-free graphs.

The Lippmann--Schwinger--Lanczos (LSL) algorithm has recently been shown to provide an efficient tool for imaging and direct inversion of synthetic aperture radar data in multi-scattering environments \cite{DrMoZa3}, where the data set is limited to the monostatic, a.k.a. single input/single output (SISO) measurements. The approach is based on constructing data-driven estimates of internal fields via a reduced-order model (ROM) framework and then plugging them into the Lippmann-Schwinger integral equation. However, the approximations of the internal solutions may have more error due to missing the off diagonal elements of the multiple input/multiple output (MIMO) matrix valued transfer function. This, in turn, may result in multiple echoes in the image. Here we present a ROM-based data completion algorithm to mitigate this problem. First, we apply the LSL algorithm to the SISO data as in \cite{DrMoZa3} to obtain approximate reconstructions as well as the estimate of internal field. Next, we use these estimates to calculate a forward Lippmann-Schwinger integral to populate the missing off-diagonal data (the lifting step). Finally, to update the reconstructions, we solve the Lippmann-Schwinger equation using the original SISO data, where the internal fields are constructed from the lifted MIMO data. The steps of obtaining the approximate reconstructions and internal fields and populating the missing MIMO data entries can be repeated for complex models to improve the images even further. Efficiency of the proposed approach is demonstrated on 2D and 2.5D numerical examples, where we see reconstructions are improved substantially.

We consider the problem of enumerating all minimal transversals (also called minimal hitting sets) of a hypergraph $\mathcal{H}$. An equivalent formulation of this problem known as the \emph{transversal hypergraph} problem (or \emph{hypergraph dualization} problem) is to decide, given two hypergraphs, whether one corresponds to the set of minimal transversals of the other. The existence of a polynomial time algorithm to solve this problem is a long standing open question. In \cite{fredman_complexity_1996}, the authors present the first sub-exponential algorithm to solve the transversal hypergraph problem which runs in quasi-polynomial time, making it unlikely that the problem is (co)NP-complete. In this paper, we show that when one of the two hypergraphs is of bounded VC-dimension, the transversal hypergraph problem can be solved in polynomial time, or equivalently that if $\mathcal{H}$ is a hypergraph of bounded VC-dimension, then there exists an incremental polynomial time algorithm to enumerate its minimal transversals. This result generalizes most of the previously known polynomial cases in the literature since they almost all consider classes of hypergraphs of bouded VC-dimension. As a consequence, the hypergraph transversal problem is solvable in polynomial time for any class of hypergraphs closed under partial subhypergraphs. We also show that the proposed algorithm runs in quasi-polynomial time in general hypergraphs and runs in polynomial time if the conformality of the hypergraph is bounded, which is one of the few known polynomial cases where the VC-dimension is unbounded.

This article introduces continuous $H^2$-nonconforming finite elements in two and three space dimensions which satisfy a strong discrete Miranda--Talenti inequality in the sense that the global $L^2$ norm of the piecewise Hessian is bounded by the $L^2$ norm of the piecewise Laplacian. The construction is based on globally continuous finite element functions with $C^1$ continuity on the vertices (2D) or edges (3D). As an application, these finite elements are used to approximate uniformly elliptic equations in non-divergence form under the Cordes condition without additional stabilization terms. For the biharmonic equation in three dimensions, the proposed methods has less degrees of freedom than existing nonconforming schemes of the same order. Numerical results in two and three dimensions confirm the practical feasibility of the proposed schemes.

Finding the maximum size of a Sidon set in $\mathbb{F}_2^t$ is of research interest for more than 40 years. In order to tackle this problem we recall a one-to-one correspondence between sum-free Sidon sets and linear codes with minimum distance greater or equal 5. Our main contribution about codes is a new non-existence result for linear codes with minimum distance 5 based on a sharpening of the Johnson bound. This gives, on the Sidon set side, an improvement of the general upper bound for the maximum size of a Sidon set. Additionally, we characterise maximal Sidon sets, that are those Sidon sets which can not be extended by adding elements without loosing the Sidon property, up to dimension 6 and give all possible sizes for dimension 7 and 8 determined by computer calculations.

A new particle-based sampling and approximate inference method, based on electrostatics and Newton mechanics principles, is introduced with theoretical ground, algorithm design and experimental validation. This method simulates an interacting particle system (IPS) where particles, i.e. the freely-moving negative charges and spatially-fixed positive charges with magnitudes proportional to the target distribution, interact with each other via attraction and repulsion induced by the resulting electric fields described by Poisson's equation. The IPS evolves towards a steady-state where the distribution of negative charges conforms to the target distribution. This physics-inspired method offers deterministic, gradient-free sampling and inference, achieving comparable performance as other particle-based and MCMC methods in benchmark tasks of inferring complex densities, Bayesian logistic regression and dynamical system identification. A discrete-time, discrete-space algorithmic design, readily extendable to continuous time and space, is provided for usage in more general inference problems occurring in probabilistic machine learning scenarios such as Bayesian inference, generative modelling, and beyond.

Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.

北京阿比特科技有限公司