Automatic dialogue summarization is a well-established task with the goal of distilling the most crucial information from human conversations into concise textual summaries. However, most existing research has predominantly focused on summarizing factual information, neglecting the affective content, which can hold valuable insights for analyzing, monitoring, or facilitating human interactions. In this paper, we introduce and assess a set of measures PSentScore, aimed at quantifying the preservation of affective content in dialogue summaries. Our findings indicate that state-of-the-art summarization models do not preserve well the affective content within their summaries. Moreover, we demonstrate that a careful selection of the training set for dialogue samples can lead to improved preservation of affective content in the generated summaries, albeit with a minor reduction in content-related metrics.
Evaluating the alignment capabilities of large Vision-Language Models (VLMs) is essential for determining their effectiveness as helpful assistants. However, existing benchmarks primarily focus on basic abilities using nonverbal methods, such as yes-no and multiple-choice questions. In this paper, we address this gap by introducing AlignMMBench, a comprehensive alignment benchmark specifically designed for emerging Chinese VLMs. This benchmark is meticulously curated from real-world scenarios and Chinese Internet sources, encompassing thirteen specific tasks across three categories, and includes both single-turn and multi-turn dialogue scenarios. Incorporating a prompt rewrite strategy, AlignMMBench encompasses 1,054 images and 4,978 question-answer pairs. To facilitate the evaluation pipeline, we propose CritiqueVLM, a rule-calibrated evaluator that exceeds GPT-4's evaluation ability. Finally, we report the performance of representative VLMs on AlignMMBench, offering insights into the capabilities and limitations of different VLM architectures. All evaluation codes and data are available on //alignmmbench.github.io.
Segmentation has become a crucial pre-processing step to many refined downstream tasks, and particularly so in the medical domain. Even with recent improvements in segmentation models, many segmentation tasks remain difficult. When multiple organs are segmented simultaneously, difficulties are due not only to the limited availability of labelled data, but also to class imbalance. In this work we propose dynamic class-based loss strategies to mitigate the effects of highly imbalanced training data. We show how our approach improves segmentation performance on a challenging Multi-Class 3D Abdominal Organ dataset.
The success of the reward model in distinguishing between responses with subtle safety differences depends critically on the high-quality preference dataset, which should capture the fine-grained nuances of harmful and harmless responses. This motivates the need to develop a dataset involving preference margins, which accurately quantify how harmless one response is compared to another. In this paper, we take the first step to propose an effective and cost-efficient framework to promote the margin-enhanced preference dataset development. Our framework, Legend, Leverages representation engineering to annotate preference datasets. It constructs the specific direction within the LLM's embedding space that represents safety. By leveraging this safety direction, Legend can then leverage the semantic distances of paired responses along this direction to annotate margins automatically. We experimentally demonstrate our effectiveness in both reward modeling and harmless alignment for LLMs. Legend also stands out for its efficiency, requiring only the inference time rather than additional training. This efficiency allows for easier implementation and scalability, making Legend particularly valuable for practical applications in aligning LLMs with safe conversations.
Dataset condensation is a newborn technique that generates a small dataset that can be used in training deep neural networks to lower training costs. The objective of dataset condensation is to ensure that the model trained with the synthetic dataset can perform comparably to the model trained with full datasets. However, existing methods predominantly concentrate on classification tasks, posing challenges in their adaptation to time series forecasting (TS-forecasting). This challenge arises from disparities in the evaluation of synthetic data. In classification, the synthetic data is considered well-distilled if the model trained with the full dataset and the model trained with the synthetic dataset yield identical labels for the same input, regardless of variations in output logits distribution. Conversely, in TS-forecasting, the effectiveness of synthetic data distillation is determined by the distance between predictions of the two models. The synthetic data is deemed well-distilled only when all data points within the predictions are similar. Consequently, TS-forecasting has a more rigorous evaluation methodology compared to classification. To mitigate this gap, we theoretically analyze the optimization objective of dataset condensation for TS-forecasting and propose a new one-line plugin of dataset condensation designated as Dataset Condensation for Time Series Forecasting (CondTSF) based on our analysis. Plugging CondTSF into previous dataset condensation methods facilitates a reduction in the distance between the predictions of the model trained with the full dataset and the model trained with the synthetic dataset, thereby enhancing performance. We conduct extensive experiments on eight commonly used time series datasets. CondTSF consistently improves the performance of all previous dataset condensation methods across all datasets, particularly at low condensing ratios.
Mitigating biases in generative AI and, particularly in text-to-image models, is of high importance given their growing implications in society. The biased datasets used for training pose challenges in ensuring the responsible development of these models, and mitigation through hard prompting or embedding alteration, are the most common present solutions. Our work introduces a novel approach to achieve diverse and inclusive synthetic images by learning a direction in the latent space and solely modifying the initial Gaussian noise provided for the diffusion process. Maintaining a neutral prompt and untouched embeddings, this approach successfully adapts to diverse debiasing scenarios, such as geographical biases. Moreover, our work proves it is possible to linearly combine these learned latent directions to introduce new mitigations, and if desired, integrate it with text embedding adjustments. Furthermore, text-to-image models lack transparency for assessing bias in outputs, unless visually inspected. Thus, we provide a tool to empower developers to select their desired concepts to mitigate. The project page with code is available online.
Artificial intelligence-enhanced identification of organs, lesions, and other structures in medical imaging is typically done using convolutional neural networks (CNNs) designed to make voxel-accurate segmentations of the region of interest. However, the labels required to train these CNNs are time-consuming to generate and require attention from subject matter experts to ensure quality. For tasks where voxel-level precision is not required, object detection models offer a viable alternative that can reduce annotation effort. Despite this potential application, there are few options for general purpose object detection frameworks available for 3-D medical imaging. We report on MedYOLO, a 3-D object detection framework using the one-shot detection method of the YOLO family of models and designed for use with medical imaging. We tested this model on four different datasets: BRaTS, LIDC, an abdominal organ Computed Tomography (CT) dataset, and an ECG-gated heart CT dataset. We found our models achieve high performance on commonly present medium and large-sized structures such as the heart, liver, and pancreas even without hyperparameter tuning. However, the models struggle with very small or rarely present structures.
Machine unlearning, the study of efficiently removing the impact of specific training instances on a model, has garnered increased attention in recent years due to regulatory guidelines such as the \emph{Right to be Forgotten}. Achieving precise unlearning typically involves fully retraining the model and is computationally infeasible in case of very large models such as Large Language Models (LLMs). To this end, recent work has proposed several algorithms which approximate the removal of training data without retraining the model. These algorithms crucially rely on access to the model parameters in order to update them, an assumption that may not hold in practice due to computational constraints or having only query access to the LLMs. In this work, we propose a new class of unlearning methods for LLMs called ``In-Context Unlearning.'' This method unlearns instances from the model by simply providing specific kinds of inputs in context, without the need to update model parameters. To unlearn specific training instances, we present these instances to the LLMs at inference time along with labels that differ from their ground truth. Our experimental results demonstrate that in-context unlearning performs on par with, or in some cases outperforms other state-of-the-art methods that require access to model parameters, effectively removing the influence of specific instances on the model while preserving test accuracy.
Speech emotion recognition (SER) has gained significant attention due to its several application fields, such as mental health, education, and human-computer interaction. However, the accuracy of SER systems is hindered by high-dimensional feature sets that may contain irrelevant and redundant information. To overcome this challenge, this study proposes an iterative feature boosting approach for SER that emphasizes feature relevance and explainability to enhance machine learning model performance. Our approach involves meticulous feature selection and analysis to build efficient SER systems. In addressing our main problem through model explainability, we employ a feature evaluation loop with Shapley values to iteratively refine feature sets. This process strikes a balance between model performance and transparency, which enables a comprehensive understanding of the model's predictions. The proposed approach offers several advantages, including the identification and removal of irrelevant and redundant features, leading to a more effective model. Additionally, it promotes explainability, facilitating comprehension of the model's predictions and the identification of crucial features for emotion determination. The effectiveness of the proposed method is validated on the SER benchmarks of the Toronto emotional speech set (TESS), Berlin Database of Emotional Speech (EMO-DB), Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), and Surrey Audio-Visual Expressed Emotion (SAVEE) datasets, outperforming state-of-the-art methods. To the best of our knowledge, this is the first work to incorporate model explainability into an SER framework. The source code of this paper is publicly available via this //github.com/alaaNfissi/Unveiling-Hidden-Factors-Explainable-AI-for-Feature-Boosting-in-Speech-Emotion-Recognition.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
Recently many efforts have been devoted to applying graph neural networks (GNNs) to molecular property prediction which is a fundamental task for computational drug and material discovery. One of major obstacles to hinder the successful prediction of molecule property by GNNs is the scarcity of labeled data. Though graph contrastive learning (GCL) methods have achieved extraordinary performance with insufficient labeled data, most focused on designing data augmentation schemes for general graphs. However, the fundamental property of a molecule could be altered with the augmentation method (like random perturbation) on molecular graphs. Whereas, the critical geometric information of molecules remains rarely explored under the current GNN and GCL architectures. To this end, we propose a novel graph contrastive learning method utilizing the geometry of the molecule across 2D and 3D views, which is named GeomGCL. Specifically, we first devise a dual-view geometric message passing network (GeomMPNN) to adaptively leverage the rich information of both 2D and 3D graphs of a molecule. The incorporation of geometric properties at different levels can greatly facilitate the molecular representation learning. Then a novel geometric graph contrastive scheme is designed to make both geometric views collaboratively supervise each other to improve the generalization ability of GeomMPNN. We evaluate GeomGCL on various downstream property prediction tasks via a finetune process. Experimental results on seven real-life molecular datasets demonstrate the effectiveness of our proposed GeomGCL against state-of-the-art baselines.