亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep learning has redefined the field of artificial intelligence (AI) thanks to the rise of artificial neural networks, which are architectures inspired by their neurological counterpart in the brain. Through the years, this dualism between AI and neuroscience has brought immense benefits to both fields, allowing neural networks to be used in dozens of applications. These networks use an efficient implementation of reverse differentiation, called backpropagation (BP). This algorithm, however, is often criticized for its biological implausibility (e.g., lack of local update rules for the parameters). Therefore, biologically plausible learning methods that rely on predictive coding (PC), a framework for describing information processing in the brain, are increasingly studied. Recent works prove that these methods can approximate BP up to a certain margin on multilayer perceptrons (MLPs), and asymptotically on any other complex model, and that zero-divergence inference learning (Z-IL), a variant of PC, is able to exactly implement BP on MLPs. However, the recent literature shows also that there is no biologically plausible method yet that can exactly replicate the weight update of BP on complex models. To fill this gap, in this paper, we generalize (PC and) Z-IL by directly defining them on computational graphs, and show that it can perform exact reverse differentiation. What results is the first biologically plausible algorithm that is equivalent to BP in the way of updating parameters on any neural network, providing a bridge between the interdisciplinary research of neuroscience and deep learning.

相關內容

In recent years, implicit deep learning has emerged as a method to increase the effective depth of deep neural networks. While their training is memory-efficient, they are still significantly slower to train than their explicit counterparts. In Deep Equilibrium Models (DEQs), the training is performed as a bi-level problem, and its computational complexity is partially driven by the iterative inversion of a huge Jacobian matrix. In this paper, we propose a novel strategy to tackle this computational bottleneck from which many bi-level problems suffer. The main idea is to use the quasi-Newton matrices from the forward pass to efficiently approximate the inverse Jacobian matrix in the direction needed for the gradient computation. We provide a theorem that motivates using our method with the original forward algorithms. In addition, by modifying these forward algorithms, we further provide theoretical guarantees that our method asymptotically estimates the true implicit gradient. We empirically study this approach and the recent Jacobian-Free method in different settings, ranging from hyperparameter optimization to large Multiscale DEQs (MDEQs) applied to CIFAR and ImageNet. Both methods reduce significantly the computational cost of the backward pass. While SHINE has a clear advantage on hyperparameter optimization problems, both methods attain similar computational performances for larger scale problems such as MDEQs at the cost of a limited performance drop compared to the original models.

Trit-plane coding enables deep progressive image compression, but it cannot use autoregressive context models. In this paper, we propose the context-based trit-plane coding (CTC) algorithm to achieve progressive compression more compactly. First, we develop the context-based rate reduction module to estimate trit probabilities of latent elements accurately and thus encode the trit-planes compactly. Second, we develop the context-based distortion reduction module to refine partial latent tensors from the trit-planes and improve the reconstructed image quality. Third, we propose a retraining scheme for the decoder to attain better rate-distortion tradeoffs. Extensive experiments show that CTC outperforms the baseline trit-plane codec significantly in BD-rate on the Kodak lossless dataset, while increasing the time complexity only marginally. Our codes are available at //github.com/seungminjeon-github/CTC.

Event extraction (EE) plays an important role in many industrial application scenarios, and high-quality EE methods require a large amount of manual annotation data to train supervised learning models. However, the cost of obtaining annotation data is very high, especially for annotation of domain events, which requires the participation of experts from corresponding domain. So we introduce active learning (AL) technology to reduce the cost of event annotation. But the existing AL methods have two main problems, which make them not well used for event extraction. Firstly, the existing pool-based selection strategies have limitations in terms of computational cost and sample validity. Secondly, the existing evaluation of sample importance lacks the use of local sample information. In this paper, we present a novel deep AL method for EE. We propose a batch-based selection strategy and a Memory-Based Loss Prediction model (MBLP) to select unlabeled samples efficiently. During the selection process, we use an internal-external sample loss ranking method to evaluate the sample importance by using local information. Finally, we propose a delayed training strategy to train the MBLP model. Extensive experiments are performed on three domain datasets, and our method outperforms other state-of-the-art methods.

We analyse the power of graph neural networks (GNNs) in terms of Boolean circuit complexity and descriptive complexity. We prove that the graph queries that can be computed by a polynomial-size bounded-depth family of GNNs are exactly those definable in the guarded fragment GFO+C of first-order logic with counting and with built-in relations. This puts GNNs in the circuit complexity class TC^0. Remarkably, the GNN families may use arbitrary real weights and a wide class of activation functions that includes the standard ReLU, logistic "sigmoid", and hyperbolic tangent functions. If the GNNs are allowed to use random initialisation and global readout (both standard features of GNNs widely used in practice), they can compute exactly the same queries as bounded depth Boolean circuits with threshold gates, that is, exactly the queries in TC^0. Moreover, we show that queries computable by a single GNN with piecewise linear activations and rational weights are definable in GFO+C without built-in relations. Therefore, they are contained in uniform TC^0.

In a dual weighted residual method based on the finite element framework, the Galerkin orthogonality is an issue that prevents solving the dual equation in the same space as the one for the primal equation. In the literature, there have been two popular approaches to constructing a new space for the dual problem, i.e., refining mesh grids ($h$-approach) and raising the order of approximate polynomials ($p$-approach). In this paper, a novel approach is proposed for the purpose based on the multiple-precision technique, i.e., the construction of the new finite element space is based on the same configuration as the one for the primal equation, except for the precision in calculations. The feasibility of such a new approach is discussed in detail in the paper. In numerical experiments, the proposed approach can be realized conveniently with C++ \textit{template}. Moreover, the new approach shows remarkable improvements in both efficiency and storage compared with the $h$-approach and the $p$-approach. It is worth mentioning that the performance of our approach is comparable with the one through a higher order interpolation ($i$-approach) in the literature. The combination of these two approaches is believed to further enhance the efficiency of the dual weighted residual method.

Artificial Intelligence (AI) and its applications have sparked extraordinary interest in recent years. This achievement can be ascribed in part to advances in AI subfields including Machine Learning (ML), Computer Vision (CV), and Natural Language Processing (NLP). Deep learning, a sub-field of machine learning that employs artificial neural network concepts, has enabled the most rapid growth in these domains. The integration of vision and language has sparked a lot of attention as a result of this. The tasks have been created in such a way that they properly exemplify the concepts of deep learning. In this review paper, we provide a thorough and an extensive review of the state of the arts approaches, key models design principles and discuss existing datasets, methods, their problem formulation and evaluation measures for VQA and Visual reasoning tasks to understand vision and language representation learning. We also present some potential future paths in this field of research, with the hope that our study may generate new ideas and novel approaches to handle existing difficulties and develop new applications.

Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

Knowledge is a formal way of understanding the world, providing a human-level cognition and intelligence for the next-generation artificial intelligence (AI). One of the representations of knowledge is the structural relations between entities. An effective way to automatically acquire this important knowledge, called Relation Extraction (RE), a sub-task of information extraction, plays a vital role in Natural Language Processing (NLP). Its purpose is to identify semantic relations between entities from natural language text. To date, there are several studies for RE in previous works, which have documented these techniques based on Deep Neural Networks (DNNs) become a prevailing technique in this research. Especially, the supervised and distant supervision methods based on DNNs are the most popular and reliable solutions for RE. This article 1)introduces some general concepts, and further 2)gives a comprehensive overview of DNNs in RE from two points of view: supervised RE, which attempts to improve the standard RE systems, and distant supervision RE, which adopts DNNs to design the sentence encoder and the de-noise method. We further 3)cover some novel methods and describe some recent trends and discuss possible future research directions for this task.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司