亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Variational quantum approaches have shown great promise in finding near-optimal solutions to computationally challenging tasks. Nonetheless, enforcing constraints in a disciplined fashion has been largely unexplored. To address this gap, this work proposes a hybrid quantum-classical algorithmic paradigm termed VQEC that extends the celebrated VQE to handle optimization with constraints. As with the standard VQE, the vector of optimization variables is captured by the state of a variational quantum circuit (VQC). To deal with constraints, VQEC optimizes a Lagrangian function classically over both the VQC parameters as well as the dual variables associated with constraints. To comply with the quantum setup, variables are updated via a perturbed primal-dual method leveraging the parameter shift rule. Among a wide gamut of potential applications, we showcase how VQEC can approximately solve quadratically-constrained binary optimization (QCBO) problems, find stochastic binary policies satisfying quadratic constraints on the average and in probability, and solve large-scale linear programs (LP) over the probability simplex. Under an assumption on the error for the VQC to approximate an arbitrary probability mass function (PMF), we provide bounds on the optimality gap attained by a VQC. Numerical tests on a quantum simulator investigate the effect of various parameters and corroborate that VQEC can generate high-quality solutions.

相關內容

Managing knowledge efficiently is crucial for organizational success. In manufacturing, operating factories has become increasing knowledge-intensive putting strain on the factory's capacity to train and support new operators. In this paper, we introduce a Large Language Model (LLM)-based system designed to use the extensive knowledge contained in factory documentation. The system aims to efficiently answer queries from operators and facilitate the sharing of new knowledge. To assess its effectiveness, we conducted an evaluation in a factory setting. The results of this evaluation demonstrated the system's benefits; namely, in enabling quicker information retrieval and more efficient resolution of issues. However, the study also highlighted a preference for learning from a human expert when such an option is available. Furthermore, we benchmarked several closed and open-sourced LLMs for this system. GPT-4 consistently outperformed its counterparts, with open-source models like StableBeluga2 trailing closely, presenting an attractive option given its data privacy and customization benefits. Overall, this work offers preliminary insights for factories considering using LLM-tools for knowledge management.

Deep hashing approaches, including deep quantization and deep binary hashing, have become a common solution to large-scale image retrieval due to their high computation and storage efficiency. Most existing hashing methods cannot produce satisfactory results for fine-grained retrieval, because they usually adopt the outputs of the last CNN layer to generate binary codes. Since deeper layers tend to summarize visual clues, e.g., texture, into abstract semantics, e.g., dogs and cats, the feature produced by the last CNN layer is less effective in capturing subtle but discriminative visual details that mostly exist in shallow layers. To improve fine-grained image hashing, we propose Pyramid Hybrid Pooling Quantization (PHPQ). Specifically, we propose a Pyramid Hybrid Pooling (PHP) module to capture and preserve fine-grained semantic information from multi-level features, which emphasizes the subtle discrimination of different sub-categories. Besides, we propose a learnable quantization module with a partial codebook attention mechanism, which helps to optimize the most relevant codewords and improves the quantization. Comprehensive experiments on two widely-used public benchmarks, i.e., CUB-200-2011 and Stanford Dogs, demonstrate that PHPQ outperforms state-of-the-art methods.

Principal component analysis (PCA), along with its extensions to manifolds and outlier contaminated data, have been indispensable in computer vision and machine learning. In this work, we present a unifying formalism for PCA and its variants, and introduce a framework based on the flags of linear subspaces, \ie a hierarchy of nested linear subspaces of increasing dimension, which not only allows for a common implementation but also yields novel variants, not explored previously. We begin by generalizing traditional PCA methods that either maximize variance or minimize reconstruction error. We expand these interpretations to develop a wide array of new dimensionality reduction algorithms by accounting for outliers and the data manifold. To devise a common computational approach, we recast robust and dual forms of PCA as optimization problems on flag manifolds. We then integrate tangent space approximations of principal geodesic analysis (tangent-PCA) into this flag-based framework, creating novel robust and dual geodesic PCA variations. The remarkable flexibility offered by the 'flagification' introduced here enables even more algorithmic variants identified by specific flag types. Last but not least, we propose an effective convergent solver for these flag-formulations employing the Stiefel manifold. Our empirical results on both real-world and synthetic scenarios, demonstrate the superiority of our novel algorithms, especially in terms of robustness to outliers on manifolds.

Safe stabilization is a significant challenge for quadrotors, which involves reaching a goal position while avoiding obstacles. Most of the existing solutions for this problem rely on optimization-based methods, demanding substantial onboard computational resources. This paper introduces a novel approach to address this issue and provides a solution that offers fast computational capabilities tailored for onboard execution. Drawing inspiration from Sontag's universal formula, we propose an analytical control strategy that incorporates the conditions of control Lyapunov functions (CLFs) and control barrier functions (CBFs), effectively avoiding the need for solving optimization problems onboard. Moreover, we extend our approach by incorporating the concepts of input-to-state stability (ISS) and input-to-state safety (ISSf), enhancing the universal formula's capacity to effectively manage disturbances. Furthermore, we present a projection-based approach to ensure that the universal formula remains effective even when faced with control input constraints. The basic idea of this approach is to project the control input derived from the universal formula onto the closest point within the control input domain. Through comprehensive simulations and experimental results, we validate the efficacy and highlight the advantages of our methodology.

sEMG pattern recognition algorithms have been explored extensively in decoding movement intent, yet are known to be vulnerable to changing recording conditions, exhibiting significant drops in performance across subjects, and even across sessions. Multi-channel surface EMG, also referred to as high-density sEMG (HD-sEMG) systems, have been used to improve performance with the information collected through the use of additional electrodes. However, a lack of robustness is ever present due to limited datasets and the difficulties in addressing sources of variability, such as electrode placement. In this study, we propose training on a collection of input channel subsets and augmenting our training distribution with data from different electrode locations, simultaneously targeting electrode shift and reducing input dimensionality. Our method increases robustness against electrode shift and results in significantly higher intersession performance across subjects and classification algorithms.

Causal inference is a crucial goal of science, enabling researchers to arrive at meaningful conclusions regarding the predictions of hypothetical interventions using observational data. Path models, Structural Equation Models (SEMs), and, more generally, Directed Acyclic Graphs (DAGs), provide a means to unambiguously specify assumptions regarding the causal structure underlying a phenomenon. Unlike DAGs, which make very few assumptions about the functional and parametric form, SEM assumes linearity. This can result in functional misspecification which prevents researchers from undertaking reliable effect size estimation. In contrast, we propose Super Learner Equation Modeling, a path modeling technique integrating machine learning Super Learner ensembles. We empirically demonstrate its ability to provide consistent and unbiased estimates of causal effects, its competitive performance for linear models when compared with SEM, and highlight its superiority over SEM when dealing with non-linear relationships. We provide open-source code, and a tutorial notebook with example usage, accentuating the easy-to-use nature of the method.

Recent Newton-type federated learning algorithms have demonstrated linear convergence with respect to the communication rounds. However, communicating Hessian matrices is often unfeasible due to their quadratic communication complexity. In this paper, we introduce a novel approach to tackle this issue while still achieving fast convergence rates. Our proposed method, named as Federated Newton Sketch methods (FedNS), approximates the centralized Newton's method by communicating the sketched square-root Hessian instead of the exact Hessian. To enhance communication efficiency, we reduce the sketch size to match the effective dimension of the Hessian matrix. We provide convergence analysis based on statistical learning for the federated Newton sketch approaches. Specifically, our approaches reach super-linear convergence rates w.r.t. the communication rounds for the first time. We validate the effectiveness of our algorithms through various experiments, which coincide with our theoretical findings.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.

北京阿比特科技有限公司