亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Explicit time integration schemes coupled with Galerkin discretizations of time-dependent partial differential equations require solving a linear system with the mass matrix at each time step. For applications in structural dynamics, the solution of the linear system is frequently approximated through so-called mass lumping, which consists in replacing the mass matrix by some diagonal approximation. Mass lumping has been widely used in engineering practice for decades already and has a sound mathematical theory supporting it for finite element methods using the classical Lagrange basis. However, the theory for more general basis functions is still missing. Our paper partly addresses this shortcoming. Some special and practically relevant properties of lumped mass matrices are proved and we discuss how these properties naturally extend to banded and Kronecker product matrices whose structure allows to solve linear systems very efficiently. Our theoretical results are applied to isogeometric discretizations but are not restricted to them.

相關內容

MASS:IEEE International Conference on Mobile Ad-hoc and Sensor Systems。 Explanation:移動Ad hoc和傳感器系統IEEE國際會議。 Publisher:IEEE。 SIT:

This manuscript examines the problem of nonlinear stochastic fractional neutral integro-differential equations with weakly singular kernels. Our focus is on obtaining precise estimates to cover all possible cases of Abel-type singular kernels. Initially, we establish the existence, uniqueness, and continuous dependence on the initial value of the true solution, assuming a local Lipschitz condition and linear growth condition. Additionally, we develop the Euler-Maruyama method for the numerical solution of the equation and prove its strong convergence under the same conditions as the well-posedness. Moreover, we determine the accurate convergence rate of this method under global Lipschitz conditions and linear growth conditions.

Incomplete factorizations have long been popular general-purpose algebraic preconditioners for solving large sparse linear systems of equations. Guaranteeing the factorization is breakdown free while computing a high quality preconditioner is challenging. A resurgence of interest in using low precision arithmetic makes the search for robustness more urgent and tougher. In this paper, we focus on symmetric positive definite problems and explore a number of approaches: a look-ahead strategy to anticipate break down as early as possible, the use of global shifts, and a modification of an idea developed in the field of numerical optimization for the complete Cholesky factorization of dense matrices. Our numerical simulations target highly ill-conditioned sparse linear systems with the goal of computing the factors in half precision arithmetic and then achieving double precision accuracy using mixed precision refinement.

We propose new linear combinations of compositions of a basic second-order scheme with appropriately chosen coefficients to construct higher order numerical integrators for differential equations. They can be considered as a generalization of extrapolation methods and multi-product expansions. A general analysis is provided and new methods up to order 8 are built and tested. The new approach is shown to reduce the latency problem when implemented in a parallel environment and leads to schemes that are significantly more efficient than standard extrapolation when the linear combination is delayed by a number of steps.

A novel strategy is proposed for the coupling of field and circuit equations when modeling power devices in the low-frequency regime. The resulting systems of differential-algebraic equations have a particular geometric structure which explicitly encodes the energy storage, dissipation, and transfer mechanisms. This implies a power balance on the continuous level which can be preserved under appropriate discretization in space and time. The models and main results are presented in detail for linear constitutive models, but the extension to nonlinear elements and more general coupling mechanisms is possible. The theoretical findings are demonstrated by numerical results.

This paper introduces a second-order method for solving general elliptic partial differential equations (PDEs) on irregular domains using GPU acceleration, based on Ying's kernel-free boundary integral (KFBI) method. The method addresses limitations imposed by CFL conditions in explicit schemes and accuracy issues in fully implicit schemes for the Laplacian operator. To overcome these challenges, the paper employs a series of second-order time discrete schemes and splits the Laplacian operator into explicit and implicit components. Specifically, the Crank-Nicolson method discretizes the heat equation in the temporal dimension, while the implicit scheme is used for the wave equation. The Schrodinger equation is treated using the Strang splitting method. By discretizing the temporal dimension implicitly, the heat, wave, and Schrodinger equations are transformed into a sequence of elliptic equations. The Laplacian operator on the right-hand side of the elliptic equation is obtained from the numerical scheme rather than being discretized and corrected by the five-point difference method. A Cartesian grid-based KFBI method is employed to solve the resulting elliptic equations. GPU acceleration, achieved through a parallel Cartesian grid solver, enhances the computational efficiency by exploiting high degrees of parallelism. Numerical results demonstrate that the proposed method achieves second-order accuracy for the heat, wave, and Schrodinger equations. Furthermore, the GPU-accelerated solvers for the three types of time-dependent equations exhibit a speedup of 30 times compared to CPU-based solvers.

Solving high-dimensional partial differential equations necessitates methods free of exponential scaling in the dimension of the problem. This work introduces a tensor network approach for the Kolmogorov backward equation via approximating directly the Markov operator. We show that the high-dimensional Markov operator can be obtained under a functional hierarchical tensor (FHT) ansatz with a hierarchical sketching algorithm. When the terminal condition admits an FHT ansatz, the proposed operator outputs an FHT ansatz for the PDE solution through an efficient functional tensor network contraction procedure. In addition, the proposed operator-based approach also provides an efficient way to solve the Kolmogorov forward equation when the initial distribution is in an FHT ansatz. We apply the proposed approach successfully to two challenging time-dependent Ginzburg-Landau models with hundreds of variables.

Many analyses of multivariate data focus on evaluating the dependence between two sets of variables, rather than the dependence among individual variables within each set. Canonical correlation analysis (CCA) is a classical data analysis technique that estimates parameters describing the dependence between such sets. However, inference procedures based on traditional CCA rely on the assumption that all variables are jointly normally distributed. We present a semiparametric approach to CCA in which the multivariate margins of each variable set may be arbitrary, but the dependence between variable sets is described by a parametric model that provides low-dimensional summaries of dependence. While maximum likelihood estimation in the proposed model is intractable, we propose two estimation strategies: one using a pseudolikelihood for the model and one using a Markov chain Monte Carlo (MCMC) algorithm that provides Bayesian estimates and confidence regions for the between-set dependence parameters. The MCMC algorithm is derived from a multirank likelihood function, which uses only part of the information in the observed data in exchange for being free of assumptions about the multivariate margins. We apply the proposed Bayesian inference procedure to Brazilian climate data and monthly stock returns from the materials and communications market sectors.

To integrate large systems of nonlinear differential equations in time, we consider a variant of nonlinear waveform relaxation (also known as dynamic iteration or Picard-Lindel\"of iteration), where at each iteration a linear inhomogeneous system of differential equations has to be solved. This is done by the exponential block Krylov subspace (EBK) method. Thus, we have an inner-outer iterative method, where iterative approximations are determined over a certain time interval, with no time stepping involved. This approach has recently been shown to be efficient as a time-parallel integrator within the PARAEXP framework. In this paper, convergence behavior of this method is assessed theoretically and practically. We examine efficiency of the method by testing it on nonlinear Burgers, three-dimensional Liouville-Bratu-Gelfand, and three-dimensional nonlinear heat conduction equations and comparing its performance with that of conventional time-stepping integrators.

We present difference schemes for stochastic transport equations with low-regularity velocity fields. We establish $L^2$ stability and convergence of the difference approximations under conditions that are less strict than those required for deterministic transport equations. The $L^2$ estimate, crucial for the analysis, is obtained through a discrete duality argument and a comprehensive examination of a class of backward parabolic difference schemes.

This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial values, the regularity of the mild solution is investigated, and an error estimate is derived with the spatial $ L^2 $-norm. For smooth initial values, two error estimates with the general spatial $ L^q $-norms are established.

北京阿比特科技有限公司