Clones of operations of arity $\omega$ (referred to as $\omega$-operations) have been employed by Neumann to represent varieties of infinitary algebras defined by operations of at most arity $\omega$. More recently, clone algebras have been introduced to study clones of functions, including $\omega$-operations, within the framework of one-sorted universal algebra. Additionally, polymorphisms of arity $\omega$, which are $\omega$-operations preserving the relations of a given first-order structure, have recently been used to establish model theory results with applications in the field of complexity of CSP problems. In this paper, we undertake a topological and algebraic study of polymorphisms of arity $\omega$ and their corresponding invariant relations. Given a Boolean ideal $X$ on the set $A^\omega$, we propose a method to endow the set of $\omega$-operations on $A$ with a topology, which we refer to as $X$-topology. Notably, the topology of pointwise convergence can be retrieved as a special case of this approach. Polymorphisms and invariant relations are then defined parametrically, with respect to the $X$-topology. We characterise the $X$-closed clones of $\omega$-operations in terms of $Pol^\omega$-$Inv^\omega$ and present a method to relate $Inv^\omega$-$Pol^\omega$ to the classical (finitary) $Inv$-$Pol$.
A model is considered well-calibrated when its probability estimate aligns with the actual likelihood of the output being correct. Calibrating language models (LMs) is crucial, as it plays a vital role in detecting and mitigating hallucinations, a common issue of LMs, as well as building more trustworthy models. Yet, popular neural model calibration techniques are not well-suited for LMs due to their lack of flexibility in discerning answer correctness and their high computational costs. For instance, post-processing methods like temperature scaling are often unable to reorder the candidate generations. Moreover, training-based methods require finetuning the entire model, which is impractical due to the increasing sizes of modern LMs. In this paper, we present LitCab, a lightweight calibration mechanism consisting of a single linear layer taking the input text representation and manipulateing the LM output logits. LitCab improves model calibration by only adding < 2% of the original model parameters. For evaluation, we construct CaT, a benchmark consisting of 7 text generation tasks, covering responses ranging from short phrases to paragraphs. We test LitCab with Llama2-7B, where it improves calibration across all tasks, by reducing the average ECE score by 20%. We further conduct a comprehensive evaluation with 7 popular open-sourced LMs from GPT and LLaMA families, yielding the following key findings: (1) Larger models within the same family exhibit better calibration on tasks with short generation tasks, but not necessarily for longer ones. (2) GPT-family models show superior calibration compared to LLaMA, Llama2 and Vicuna models despite having much fewer parameters. (3) Finetuning pretrained model (e.g., LLaMA) with samples of limited purpose (e.g., conversations) may lead to worse calibration, highlighting the importance of finetuning setups for calibrating LMs.
Clans are representations of generalized algebraic theories that contain more information than the finite-limit categories associated to the locally finitely presentable categories of models via Gabriel-Ulmer duality. Extending Gabriel-Ulmer duality to account for this additional information, we present a duality theory between clans and locally finitely presentable categories equipped with a weak factorization system of a certain kind.
The Weisfeiler-Leman (WL) dimension of a graph parameter $f$ is the minimum $k$ such that, if $G_1$ and $G_2$ are indistinguishable by the $k$-dimensional WL-algorithm then $f(G_1)=f(G_2)$. The WL-dimension of $f$ is $\infty$ if no such $k$ exists. We study the WL-dimension of graph parameters characterised by the number of answers from a fixed conjunctive query to the graph. Given a conjunctive query $\varphi$, we quantify the WL-dimension of the function that maps every graph $G$ to the number of answers of $\varphi$ in $G$. The works of Dvor\'ak (J. Graph Theory 2010), Dell, Grohe, and Rattan (ICALP 2018), and Neuen (ArXiv 2023) have answered this question for full conjunctive queries, which are conjunctive queries without existentially quantified variables. For such queries $\varphi$, the WL-dimension is equal to the treewidth of the Gaifman graph of $\varphi$. In this work, we give a characterisation that applies to all conjunctive qureies. Given any conjunctive query $\varphi$, we prove that its WL-dimension is equal to the semantic extension width $\mathsf{sew}(\varphi)$, a novel width measure that can be thought of as a combination of the treewidth of $\varphi$ and its quantified star size, an invariant introduced by Durand and Mengel (ICDT 2013) describing how the existentially quantified variables of $\varphi$ are connected with the free variables. Using the recently established equivalence between the WL-algorithm and higher-order Graph Neural Networks (GNNs) due to Morris et al. (AAAI 2019), we obtain as a consequence that the function counting answers to a conjunctive query $\varphi$ cannot be computed by GNNs of order smaller than $\mathsf{sew}(\varphi)$.
We present a structure-preserving Eulerian algorithm for solving $L^2$-gradient flows and a structure-preserving Lagrangian algorithm for solving generalized diffusions. Both algorithms employ neural networks as tools for spatial discretization. Unlike most existing methods that construct numerical discretizations based on the strong or weak form of the underlying PDE, the proposed schemes are constructed based on the energy-dissipation law directly. This guarantees the monotonic decay of the system's energy, which avoids unphysical states of solutions and is crucial for the long-term stability of numerical computations. To address challenges arising from nonlinear neural-network discretization, we first perform temporal discretization on these variational systems. This approach is computationally memory-efficient when implementing neural network-based algorithms. The proposed neural-network-based schemes are mesh-free, allowing us to solve gradient flows in high dimensions. Various numerical experiments are presented to demonstrate the accuracy and energy stability of the proposed numerical schemes.
Neural collapse provides an elegant mathematical characterization of learned last layer representations (a.k.a. features) and classifier weights in deep classification models. Such results not only provide insights but also motivate new techniques for improving practical deep models. However, most of the existing empirical and theoretical studies in neural collapse focus on the case that the number of classes is small relative to the dimension of the feature space. This paper extends neural collapse to cases where the number of classes are much larger than the dimension of feature space, which broadly occur for language models, retrieval systems, and face recognition applications. We show that the features and classifier exhibit a generalized neural collapse phenomenon, where the minimum one-vs-rest margins is maximized.We provide empirical study to verify the occurrence of generalized neural collapse in practical deep neural networks. Moreover, we provide theoretical study to show that the generalized neural collapse provably occurs under unconstrained feature model with spherical constraint, under certain technical conditions on feature dimension and number of classes.
We present an approach to the verification of systems for whose description some elements - constants or functions - are underspecified and can be regarded as parameters, and, in particular, describe a method for automatically generating constraints on such parameters under which certain safety conditions are guaranteed to hold. We present an implementation and illustrate its use on several examples.
For a set of points in $\mathbb{R}^d$, the Euclidean $k$-means problems consists of finding $k$ centers such that the sum of distances squared from each data point to its closest center is minimized. Coresets are one the main tools developed recently to solve this problem in a big data context. They allow to compress the initial dataset while preserving its structure: running any algorithm on the coreset provides a guarantee almost equivalent to running it on the full data. In this work, we study coresets in a fully-dynamic setting: points are added and deleted with the goal to efficiently maintain a coreset with which a k-means solution can be computed. Based on an algorithm from Henzinger and Kale [ESA'20], we present an efficient and practical implementation of a fully dynamic coreset algorithm, that improves the running time by up to a factor of 20 compared to our non-optimized implementation of the algorithm by Henzinger and Kale, without sacrificing more than 7% on the quality of the k-means solution.
Recently, Arjevani et al. [1] established a lower bound of iteration complexity for the first-order optimization under an $L$-smooth condition and a bounded noise variance assumption. However, a thorough review of existing literature on Adam's convergence reveals a noticeable gap: none of them meet the above lower bound. In this paper, we close the gap by deriving a new convergence guarantee of Adam, with only an $L$-smooth condition and a bounded noise variance assumption. Our results remain valid across a broad spectrum of hyperparameters. Especially with properly chosen hyperparameters, we derive an upper bound of the iteration complexity of Adam and show that it meets the lower bound for first-order optimizers. To the best of our knowledge, this is the first to establish such a tight upper bound for Adam's convergence. Our proof utilizes novel techniques to handle the entanglement between momentum and adaptive learning rate and to convert the first-order term in the Descent Lemma to the gradient norm, which may be of independent interest.
High sample complexity has long been a challenge for RL. On the other hand, humans learn to perform tasks not only from interaction or demonstrations, but also by reading unstructured text documents, e.g., instruction manuals. Instruction manuals and wiki pages are among the most abundant data that could inform agents of valuable features and policies or task-specific environmental dynamics and reward structures. Therefore, we hypothesize that the ability to utilize human-written instruction manuals to assist learning policies for specific tasks should lead to a more efficient and better-performing agent. We propose the Read and Reward framework. Read and Reward speeds up RL algorithms on Atari games by reading manuals released by the Atari game developers. Our framework consists of a QA Extraction module that extracts and summarizes relevant information from the manual and a Reasoning module that evaluates object-agent interactions based on information from the manual. An auxiliary reward is then provided to a standard A2C RL agent, when interaction is detected. Experimentally, various RL algorithms obtain significant improvement in performance and training speed when assisted by our design.
The persistent homology transform (PHT) represents a shape with a multiset of persistence diagrams parameterized by the sphere of directions in the ambient space. In this work, we describe a finite set of diagrams that discretize the PHT such that it faithfully represents the underlying shape. We provide a discretization that is exponential in the dimension of the shape. Moreover, we show that this discretization is stable with respect to various perturbations. Furthermore, we provide an algorithm for computing the discretization. Our approach relies only on knowing the heights and dimensions of topological events, which means that it can be adapted to provide discretizations of other dimension-returning topological transforms, including the Betti curve transform. With mild alterations, we also adapt our methods to faithfully discretize the Euler Characteristic curve transform.