亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Reasoning about distance is indispensable for establishing or avoiding contact in manipulation tasks. To this end, we present an online method for learning implicit representations of signed distance using piecewise polynomial basis functions. Starting from an arbitrary prior shape, our approach incrementally constructs a continuous representation from incoming point cloud data. It offers fast access to distance and analytical gradients without the need to store training data. We assess the accuracy of our model on a diverse set of household objects and compare it to neural network and Gaussian process counterparts. Distance reconstruction and real-time updates are further evaluated in a physical experiment by simultaneously collecting sparse point cloud data and using the evolving model to control a manipulator.

相關內容

Many, if not most, systems of interest in science are naturally described as nonlinear dynamical systems. Empirically, we commonly access these systems through time series measurements. Often such time series may consist of discrete random variables rather than continuous measurements, or may be composed of measurements from multiple data modalities observed simultaneously. For instance, in neuroscience we may have behavioral labels in addition to spike counts and continuous physiological recordings. While by now there is a burgeoning literature on deep learning for dynamical systems reconstruction (DSR), multimodal data integration has hardly been considered in this context. Here we provide such an efficient and flexible algorithmic framework that rests on a multimodal variational autoencoder for generating a sparse teacher signal that guides training of a reconstruction model, exploiting recent advances in DSR training techniques. It enables to combine various sources of information for optimal reconstruction, even allows for reconstruction from symbolic data (class labels) alone, and connects different types of observations within a common latent dynamics space. In contrast to previous multimodal data integration techniques for scientific applications, our framework is fully \textit{generative}, producing, after training, trajectories with the same geometrical and temporal structure as those of the ground truth system.

Large Language Models (LLMs) have quickly risen to prominence due to their ability to perform at or close to the state-of-the-art in a variety of fields while handling natural language. An important field of research is the application of such models at the cybersecurity context. This survey aims to identify where in the field of cybersecurity LLMs have already been applied, the ways in which they are being used and their limitations in the field. Finally, suggestions are made on how to improve such limitations and what can be expected from these systems once these limitations are overcome.

Despite the importance of having a measure of confidence in recommendation results, it has been surprisingly overlooked in the literature compared to the accuracy of the recommendation. In this dissertation, I propose a model calibration framework for recommender systems for estimating accurate confidence in recommendation results based on the learned ranking scores. Moreover, I subsequently introduce two real-world applications of confidence on recommendations: (1) Training a small student model by treating the confidence of a big teacher model as additional learning guidance, (2) Adjusting the number of presented items based on the expected user utility estimated with calibrated probability.

The brain-inspired Spiking Neural Networks (SNNs) have garnered considerable research interest due to their superior performance and energy efficiency in processing temporal signals. Recently, a novel multi-compartment spiking neuron model, namely the Two-Compartment LIF (TC-LIF) model, has been proposed and exhibited a remarkable capacity for sequential modelling. However, training the TC-LIF model presents challenges stemming from the large memory consumption and the issue of gradient vanishing associated with the Backpropagation Through Time (BPTT) algorithm. To address these challenges, online learning methodologies emerge as a promising solution. Yet, to date, the application of online learning methods in SNNs has been predominantly confined to simplified Leaky Integrate-and-Fire (LIF) neuron models. In this paper, we present a novel online learning method specifically tailored for networks of TC-LIF neurons. Additionally, we propose a refined TC-LIF neuron model called Adaptive TC-LIF, which is carefully designed to enhance temporal information integration in online learning scenarios. Extensive experiments, conducted on various sequential benchmarks, demonstrate that our approach successfully preserves the superior sequential modeling capabilities of the TC-LIF neuron while incorporating the training efficiency and hardware friendliness of online learning. As a result, it offers a multitude of opportunities to leverage neuromorphic solutions for processing temporal signals.

Identifiability of a mathematical model plays a crucial role in parameterization of the model. In this study, we establish the structural identifiability of a Susceptible-Exposed-Infected-Recovered (SEIR) model given different combinations of input data and investigate practical identifiability with respect to different observable data, data frequency, and noise distributions. The practical identifiability is explored by both Monte Carlo simulations and a Correlation Matrix approach. Our results show that practical identifiability benefits from higher data frequency and data from the peak of an outbreak. The incidence data gives the best practical identifiability results compared to prevalence and cumulative data. In addition, we compare and distinguish the practical identifiability by Monte Carlo simulations and a Correlation Matrix approach, providing insights for when to use which method for other applications.

Nuclear facilities must routinely survey their infrastructure for radiation contamination. Generally, this is done by trained professionals, wearing personal protective equipment (PPE) that swipe potentially contaminated surfaces and test the wipes under detectors. This approach leaves personnel vulnerable to radiation exposure and is not comprehensive. Robots address these inadequacies, offering a cost-effective solution with negligible downtime. We present a Robot Radiation Survey System (RRSS): a heterogeneous robot team to perform comprehensive alpha/beta/gamma radiation surveys. The RRSS system members, core capabilities, and comprehensive survey plan are addresses in this paper.

Signing quantum messages has long been considered impossible even under computational assumptions. In this work, we challenge this notion and provide three innovative approaches to sign quantum messages that are the first to ensure authenticity with public verifiability. Our contributions can be summarized as follows: 1) We introduce the concept of time-dependent (TD) signatures, where the signature of a quantum message depends on the time of signing and the verification process depends on the time of the signature reception. We construct this primitive assuming the existence of post-quantum secure one-way functions (pq-OWFs) and time-lock puzzles (TLPs). 2) By utilizing verification keys that evolve over time, we eliminate the need for TLPs in our construction. This leads to TD signatures from pq-OWFs with dynamic verification keys. 3) We then consider the bounded quantum storage model, where adversaries are limited with respect to their quantum memories. We show that quantum messages can be signed with information-theoretic security in this model. Moreover, we leverage TD signatures to achieve the following objectives, relying solely on pq-OWFs: (a) We design a public key encryption scheme featuring authenticated quantum public keys that resist adversarial tampering. (b) We present a novel TD public-key quantum money scheme.

Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of such perception system especially for the sake of path planning, motion prediction, collision avoidance, etc. Generally, stereo or monocular images with corresponding 3D point clouds are already standard layout for 3D object detection, out of which point clouds are increasingly prevalent with accurate depth information being provided. Despite existing efforts, 3D object detection on point clouds is still in its infancy due to high sparseness and irregularity of point clouds by nature, misalignment view between camera view and LiDAR bird's eye of view for modality synergies, occlusions and scale variations at long distances, etc. Recently, profound progress has been made in 3D object detection, with a large body of literature being investigated to address this vision task. As such, we present a comprehensive review of the latest progress in this field covering all the main topics including sensors, fundamentals, and the recent state-of-the-art detection methods with their pros and cons. Furthermore, we introduce metrics and provide quantitative comparisons on popular public datasets. The avenues for future work are going to be judiciously identified after an in-deep analysis of the surveyed works. Finally, we conclude this paper.

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

To quickly obtain new labeled data, we can choose crowdsourcing as an alternative way at lower cost in a short time. But as an exchange, crowd annotations from non-experts may be of lower quality than those from experts. In this paper, we propose an approach to performing crowd annotation learning for Chinese Named Entity Recognition (NER) to make full use of the noisy sequence labels from multiple annotators. Inspired by adversarial learning, our approach uses a common Bi-LSTM and a private Bi-LSTM for representing annotator-generic and -specific information. The annotator-generic information is the common knowledge for entities easily mastered by the crowd. Finally, we build our Chinese NE tagger based on the LSTM-CRF model. In our experiments, we create two data sets for Chinese NER tasks from two domains. The experimental results show that our system achieves better scores than strong baseline systems.

北京阿比特科技有限公司