亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Proximal causal inference is a recently proposed framework for evaluating causal effects in the presence of unmeasured confounding. For point identification of causal effects, it leverages a pair of so-called treatment and outcome confounding proxy variables, to identify a bridge function that matches the dependence of potential outcomes or treatment variables on the hidden factors to corresponding functions of observed proxies. Unique identification of a causal effect via a bridge function crucially requires that proxies are sufficiently relevant for hidden factors, a requirement that has previously been formalized as a completeness condition. However, completeness is well-known not to be empirically testable, and although a bridge function may be well-defined, lack of completeness, sometimes manifested by availability of a single type of proxy, may severely limit prospects for identification of a bridge function and thus a causal effect; therefore, potentially restricting the application of the proximal causal framework. In this paper, we propose partial identification methods that do not require completeness and obviate the need for identification of a bridge function. That is, we establish that proxies of unobserved confounders can be leveraged to obtain bounds on the causal effect of the treatment on the outcome even if available information does not suffice to identify either a bridge function or a corresponding causal effect of interest. Our bounds are non-smooth functionals of the observed data distribution. As a consequence, in the context of inference, we initially provide a smooth approximation of our bounds. Subsequently, we leverage bootstrap confidence intervals on the approximated bounds. We further establish analogous partial identification results in related settings where identification hinges upon hidden mediators for which proxies are available.

相關內容

Proximal causal learning is a promising framework for identifying the causal effect under the existence of unmeasured confounders. Within this framework, the doubly robust (DR) estimator was derived and has shown its effectiveness in estimation, especially when the model assumption is violated. However, the current form of the DR estimator is restricted to binary treatments, while the treatment can be continuous in many real-world applications. The primary obstacle to continuous treatments resides in the delta function present in the original DR estimator, making it infeasible in causal effect estimation and introducing a heavy computational burden in nuisance function estimation. To address these challenges, we propose a kernel-based DR estimator that can well handle continuous treatments. Equipped with its smoothness, we show that its oracle form is a consistent approximation of the influence function. Further, we propose a new approach to efficiently solve the nuisance functions. We then provide a comprehensive convergence analysis in terms of the mean square error. We demonstrate the utility of our estimator on synthetic datasets and real-world applications.

Understanding the dimension dependency of computational complexity in high-dimensional sampling problem is a fundamental problem, both from a practical and theoretical perspective. Compared with samplers with unbiased stationary distribution, e.g., Metropolis-adjusted Langevin algorithm (MALA), biased samplers, e.g., Underdamped Langevin Dynamics (ULD), perform better in low-accuracy cases just because a lower dimension dependency in their complexities. Along this line, Freund et al. (2022) suggest that the modified Langevin algorithm with prior diffusion is able to converge dimension independently for strongly log-concave target distributions. Nonetheless, it remains open whether such property establishes for more general cases. In this paper, we investigate the prior diffusion technique for the target distributions satisfying log-Sobolev inequality (LSI), which covers a much broader class of distributions compared to the strongly log-concave ones. In particular, we prove that the modified Langevin algorithm can also obtain the dimension-independent convergence of KL divergence with different step size schedules. The core of our proof technique is a novel construction of an interpolating SDE, which significantly helps to conduct a more accurate characterization of the discrete updates of the overdamped Langevin dynamics. Our theoretical analysis demonstrates the benefits of prior diffusion for a broader class of target distributions and provides new insights into developing faster sampling algorithms.

We prove the expected disturbance caused to a quantum system by a sequence of randomly ordered two-outcome projective measurements is upper bounded by the square root of the probability that at least one measurement in the sequence accepts. We call this bound the Gentle Random Measurement Lemma. We then consider problems in which we are given sample access to an unknown state $\rho$ and asked to estimate properties of the accepting probabilities $\text{Tr}[M_i \rho]$ of a set of measurements $\{M_1, M_2, \ldots , M_m\}$. We call these types of problems Quantum Event Learning Problems. Using the gentle random measurement lemma, we show randomly ordering projective measurements solves the Quantum OR problem, answering an open question of Aaronson. We also give a Quantum OR protocol which works on non-projective measurements but which requires a more complicated type of measurement, which we call a Blended Measurement. Given additional guarantees on the set of measurements $\{M_1, \ldots, M_m\}$, we show the Quantum OR protocols developed in this paper can also be used to find a measurement $M_i$ such that $\text{Tr}[M_i \rho]$ is large. We also give a blended measurement based protocol for estimating the average accepting probability of a set of measurements on an unknown state. Finally we consider the Threshold Search Problem described by O'Donnell and B\u{a}descu. By building on our Quantum Event Finding result we show that randomly ordered (or blended) measurements can be used to solve this problem using $O(\log^2(m) / \epsilon^2)$ copies of $\rho$. Consequently, we obtain an algorithm for Shadow Tomography which requires $\tilde{O}(\log^2(m)\log(d)/\epsilon^4)$ samples, matching the current best known sample complexity. This algorithm does not require injected noise in the quantum measurements, but does require measurements to be made in a random order and so is no longer online.

The estimation of cumulative distribution functions (CDF) is an important learning task with a great variety of downstream applications, such as risk assessments in predictions and decision making. In this paper, we study functional regression of contextual CDFs where each data point is sampled from a linear combination of context dependent CDF basis functions. We propose functional ridge-regression-based estimation methods that estimate CDFs accurately everywhere. In particular, given $n$ samples with $d$ basis functions, we show estimation error upper bounds of $\widetilde O(\sqrt{d/n})$ for fixed design, random design, and adversarial context cases. We also derive matching information theoretic lower bounds, establishing minimax optimality for CDF functional regression. Furthermore, we remove the burn-in time in the random design setting using an alternative penalized estimator. Then, we consider agnostic settings where there is a mismatch in the data generation process. We characterize the error of the proposed estimators in terms of the mismatched error, and show that the estimators are well-behaved under model mismatch. Moreover, to complete our study, we formalize infinite dimensional models where the parameter space is an infinite dimensional Hilbert space, and establish a self-normalized estimation error upper bound for this setting. Notably, the upper bound reduces to the $\widetilde O(\sqrt{d/n})$ bound when the parameter space is constrained to be $d$-dimensional. Our comprehensive numerical experiments validate the efficacy of our estimation methods in both synthetic and practical settings.

We study the identification of causal effects, motivated by two improvements to identifiability which can be attained if one knows that some variables in a causal graph are functionally determined by their parents (without needing to know the specific functions). First, an unidentifiable causal effect may become identifiable when certain variables are functional. Second, certain functional variables can be excluded from being observed without affecting the identifiability of a causal effect, which may significantly reduce the number of needed variables in observational data. Our results are largely based on an elimination procedure which removes functional variables from a causal graph while preserving key properties in the resulting causal graph, including the identifiability of causal effects.

Flexible modeling of the entire distribution as a function of covariates is an important generalization of mean-based regression that has seen growing interest over the past decades in both the statistics and machine learning literature. This review outlines selected state-of-the-art statistical approaches to distributional regression, complemented with alternatives from machine learning. Topics covered include the similarities and differences between these approaches, extensions, properties and limitations, estimation procedures, and the availability of software. In view of the increasing complexity and availability of large-scale data, this review also discusses the scalability of traditional estimation methods, current trends, and open challenges. Illustrations are provided using data on childhood malnutrition in Nigeria and Australian electricity prices.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司