亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Developing artificial intelligence approaches to overcome novel, unexpected circumstances is a difficult, unsolved problem. One challenge to advancing the state of the art in novelty accommodation is the availability of testing frameworks for evaluating performance against novel situations. Recent novelty generation approaches in domains such as Science Birds and Monopoly leverage human domain expertise during the search to discover new novelties. Such approaches introduce human guidance before novelty generation occurs and yield novelties that can be directly loaded into a simulated environment. We introduce a new approach to novelty generation that uses abstract models of environments (including simulation domains) that do not require domain-dependent human guidance to generate novelties. A key result is a larger, often infinite space of novelties capable of being generated, with the trade-off being a requirement to involve human guidance to select and filter novelties post generation. We describe our Human-in-the-Loop novelty generation process using our open-source novelty generation library to test baseline agents in two domains: Monopoly and VizDoom. Our results shows the Human-in-the-Loop method enables users to develop, implement, test, and revise novelties within 4 hours for both Monopoly and VizDoom domains.

相關內容

Convolutional networks are considered shift invariant, but it was demonstrated that their response may vary according to the exact location of the objects. In this paper we will demonstrate that most commonly investigated datasets have a bias, where objects are over-represented at the center of the image during training. This bias and the boundary condition of these networks can have a significant effect on the performance of these architectures and their accuracy drops significantly as an object approaches the boundary. We will also demonstrate how this effect can be mitigated with data augmentation techniques.

We present a finite blocklength performance bound for a DNA storage channel with insertions, deletions, and substitutions. The considered bound -- the dependency testing (DT) bound, introduced by Polyanskiy et al. in 2010 -- provides an upper bound on the achievable frame error probability and can be used to benchmark coding schemes in the practical short-to-medium blocklength regime. In particular, we consider a concatenated coding scheme where an inner synchronization code deals with insertions and deletions and the outer code corrects remaining (mostly substitution) errors. The bound depends on the inner synchronization code. Thus, it allows to guide its choice. We then consider low-density parity-check codes for the outer code, which we optimize based on extrinsic information transfer charts. Our optimized coding schemes achieve a normalized rate of $88\%$ to $96\%$ with respect to the DT bound for code lengths up to $2000$ DNA symbols for a frame error probability of $10^{-3}$ and code rate 1/2.

Social media platforms, despite their value in promoting open discourse, are often exploited to spread harmful content. Current deep learning and natural language processing models used for detecting this harmful content overly rely on domain-specific terms affecting their capabilities to adapt to generalizable hate speech detection. This is because they tend to focus too narrowly on particular linguistic signals or the use of certain categories of words. Another significant challenge arises when platforms lack high-quality annotated data for training, leading to a need for cross-platform models that can adapt to different distribution shifts. Our research introduces a cross-platform hate speech detection model capable of being trained on one platform's data and generalizing to multiple unseen platforms. To achieve good generalizability across platforms, one way is to disentangle the input representations into invariant and platform-dependent features. We also argue that learning causal relationships, which remain constant across diverse environments, can significantly aid in understanding invariant representations in hate speech. By disentangling input into platform-dependent features (useful for predicting hate targets) and platform-independent features (used to predict the presence of hate), we learn invariant representations resistant to distribution shifts. These features are then used to predict hate speech across unseen platforms. Our extensive experiments across four platforms highlight our model's enhanced efficacy compared to existing state-of-the-art methods in detecting generalized hate speech.

Humans possess a remarkable ability to react to sudden and unpredictable perturbations through immediate mechanical responses, which harness the visco-elastic properties of muscles to perform auto-corrective movements to maintain balance. In this paper, we propose a novel design of a robotic leg inspired by this mechanism. We develop multi-material fibre jammed tendons, and demonstrate their use as passive compliant mechanisms to achieve variable joint stiffness and improve stability. Through numerical simulations and extensive experimentation, we demonstrate the ability for our system to achieve a wide range of potentially beneficial compliance regimes. We show the role and contribution of each tendon quantitatively by evaluating their individual force contribution in resisting rotational perturbations. We also perform walking experiments with programmed bioinspired gaits that varying the stiffness of the tendons throughout the gait cycle, demonstrating a stable and consistent behaviour. We show the potential of such systems when integrated into legged robots, where compliance and shock absorption can be provided entirely through the morphological properties of the leg.

Measurement invariance across items is key to the validity of instruments like a survey questionnaire or an educational test. Differential item functioning (DIF) analysis is typically conducted to assess measurement invariance at the item level. Traditional DIF analysis methods require knowing the comparison groups (reference and focal groups) and anchor items (a subset of DIF-free items). Such prior knowledge may not always be available, and psychometric methods have been proposed for DIF analysis when one piece of information is unknown. More specifically, when the comparison groups are unknown while anchor items are known, latent DIF analysis methods have been proposed that estimate the unknown groups by latent classes. When anchor items are unknown while comparison groups are known, methods have also been proposed, typically under a sparsity assumption - the number of DIF items is not too large. However, there does not exist a method for DIF analysis when both pieces of information are unknown. This paper fills the gap. In the proposed method, we model the unknown groups by latent classes and introduce item-specific DIF parameters to capture the DIF effects. Assuming the number of DIF items is relatively small, an $L_1$-regularised estimator is proposed to simultaneously identify the latent classes and the DIF items. A computationally efficient Expectation-Maximisation (EM) algorithm is developed to solve the non-smooth optimisation problem for the regularised estimator. The performance of the proposed method is evaluated by simulation studies and an application to item response data from a real-world educational test

The Non-Fungible-Token (NFT) market has experienced explosive growth in recent years. According to DappRadar, the total transaction volume on OpenSea, the largest NFT marketplace, reached 34.7 billion dollars in February 2023. However, the NFT market is mostly unregulated and there are significant concerns about money laundering, fraud and wash trading. The lack of industry-wide regulations, and the fact that amateur traders and retail investors comprise a significant fraction of the NFT market, make this market particularly vulnerable to fraudulent activities. Therefore it is essential to investigate and highlight the relevant risks involved in NFT trading. In this paper, we attempted to uncover common fraudulent behaviors such as wash trading that could mislead other traders. Using market data, we designed quantitative features from the network, monetary, and temporal perspectives that were fed into K-means clustering unsupervised learning algorithm to sort traders into groups. Lastly, we discussed the clustering results' significance and how regulations can reduce undesired behaviors. Our work can potentially help regulators narrow down their search space for bad actors in the market as well as provide insights for amateur traders to protect themselves from unforeseen frauds.

Surveillance videos and images are used for a broad set of applications, ranging from traffic analysis to crime detection. Extrinsic camera calibration data is important for most analysis applications. However, security cameras are susceptible to environmental conditions and small camera movements, resulting in a need for an automated re-calibration method that can account for these varying conditions. In this paper, we present an automated camera-calibration process leveraging a dictionary-based approach that does not require prior knowledge on any camera settings. The method consists of a custom implementation of a Spatial Transformer Network (STN) and a novel topological loss function. Experiments reveal that the proposed method improves the IoU metric by up to 12% w.r.t. a state-of-the-art model across five synthetic datasets and the World Cup 2014 dataset.

Candidates arrive sequentially for an interview process which results in them being ranked relative to their predecessors. Based on the ranks available at each time, one must develop a decision mechanism that selects or dismisses the current candidate in an effort to maximize the chance to select the best. This classical version of the ``Secretary problem'' has been studied in depth using mostly combinatorial approaches, along with numerous other variants. In this work we consider a particular new version where during reviewing one is allowed to query an external expert to improve the probability of making the correct decision. Unlike existing formulations, we consider experts that are not necessarily infallible and may provide suggestions that can be faulty. For the solution of our problem we adopt a probabilistic methodology and view the querying times as consecutive stopping times which we optimize with the help of optimal stopping theory. For each querying time we must also design a mechanism to decide whether we should terminate the search at the querying time or not. This decision is straightforward under the usual assumption of infallible experts but, when experts are faulty, it has a far more intricate structure.

Deep neural networks are vulnerable to adversarial examples, which attach human invisible perturbations to benign inputs. Simultaneously, adversarial examples exhibit transferability under different models, which makes practical black-box attacks feasible. However, existing methods are still incapable of achieving desired transfer attack performance. In this work, from the perspective of gradient optimization and consistency, we analyze and discover the gradient elimination phenomenon as well as the local momentum optimum dilemma. To tackle these issues, we propose Global Momentum Initialization (GI) to suppress gradient elimination and help search for the global optimum. Specifically, we perform gradient pre-convergence before the attack and carry out a global search during the pre-convergence stage. Our method can be easily combined with almost all existing transfer methods, and we improve the success rate of transfer attacks significantly by an average of 6.4% under various advanced defense mechanisms compared to state-of-the-art methods. Eventually, we achieve an attack success rate of 95.4%, fully illustrating the insecurity of existing defense mechanisms. Code is available at $\href{//github.com/Omenzychen/Global-Momentum-Initialization}{this\ URL}$.

We propose a novel method for automatic reasoning on knowledge graphs based on debate dynamics. The main idea is to frame the task of triple classification as a debate game between two reinforcement learning agents which extract arguments -- paths in the knowledge graph -- with the goal to promote the fact being true (thesis) or the fact being false (antithesis), respectively. Based on these arguments, a binary classifier, called the judge, decides whether the fact is true or false. The two agents can be considered as sparse, adversarial feature generators that present interpretable evidence for either the thesis or the antithesis. In contrast to other black-box methods, the arguments allow users to get an understanding of the decision of the judge. Since the focus of this work is to create an explainable method that maintains a competitive predictive accuracy, we benchmark our method on the triple classification and link prediction task. Thereby, we find that our method outperforms several baselines on the benchmark datasets FB15k-237, WN18RR, and Hetionet. We also conduct a survey and find that the extracted arguments are informative for users.

北京阿比特科技有限公司