亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The deployment of Graph Neural Networks (GNNs) within Machine Learning as a Service (MLaaS) has opened up new attack surfaces and an escalation in security concerns regarding model-centric attacks. These attacks can directly manipulate the GNN model parameters during serving, causing incorrect predictions and posing substantial threats to essential GNN applications. Traditional integrity verification methods falter in this context due to the limitations imposed by MLaaS and the distinct characteristics of GNN models. In this research, we introduce a groundbreaking approach to protect GNN models in MLaaS from model-centric attacks. Our approach includes a comprehensive verification schema for GNN's integrity, taking into account both transductive and inductive GNNs, and accommodating varying pre-deployment knowledge of the models. We propose a query-based verification technique, fortified with innovative node fingerprint generation algorithms. To deal with advanced attackers who know our mechanisms in advance, we introduce randomized fingerprint nodes within our design. The experimental evaluation demonstrates that our method can detect five representative adversarial model-centric attacks, displaying 2 to 4 times greater efficiency compared to baselines.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集(ji)成,VLSI雜志。 Publisher:Elsevier。 SIT:

Table understanding capability of Large Language Models (LLMs) has been extensively studied through the task of question-answering (QA) over tables. Typically, only a small part of the whole table is relevant to derive the answer for a given question. The irrelevant parts act as noise and are distracting information, resulting in sub-optimal performance due to the vulnerability of LLMs to noise. To mitigate this, we propose CABINET (Content RelevAnce-Based NoIse ReductioN for TablE QuesTion-Answering) - a framework to enable LLMs to focus on relevant tabular data by suppressing extraneous information. CABINET comprises an Unsupervised Relevance Scorer (URS), trained differentially with the QA LLM, that weighs the table content based on its relevance to the input question before feeding it to the question-answering LLM (QA LLM). To further aid the relevance scorer, CABINET employs a weakly supervised module that generates a parsing statement describing the criteria of rows and columns relevant to the question and highlights the content of corresponding table cells. CABINET significantly outperforms various tabular LLM baselines, as well as GPT3-based in-context learning methods, is more robust to noise, maintains outperformance on tables of varying sizes, and establishes new SoTA performance on WikiTQ, FeTaQA, and WikiSQL datasets. We release our code and datasets at //github.com/Sohanpatnaik106/CABINET_QA.

The new paradigm of finetuning-as-a-service introduces a new attack surface for Large Language Models (LLMs): a few harmful data uploaded by users can easily trick the finetuning to produce an alignment-broken model. We conduct an empirical analysis and uncover a \textit{harmful embedding drift} phenomenon, showing a probable cause of the alignment-broken effect. Inspired by our findings, we propose Vaccine, a perturbation-aware alignment technique to mitigate the security risk of users finetuning. The core idea of Vaccine is to produce invariant hidden embeddings by progressively adding crafted perturbation to them in the alignment phase. This enables the embeddings to withstand harmful perturbation from un-sanitized user data in the finetuning phase. Our results on open source mainstream LLMs (e.g., Llama2, Opt, Vicuna) demonstrate that Vaccine can boost the robustness of alignment against harmful prompts induced embedding drift while reserving reasoning ability towards benign prompts. Our code is available at \url{//github.com/git-disl/Vaccine}.

Shielding is a popular technique for achieving safe reinforcement learning (RL). However, classical shielding approaches come with quite restrictive assumptions making them difficult to deploy in complex environments, particularly those with continuous state or action spaces. In this paper we extend the more versatile approximate model-based shielding (AMBS) framework to the continuous setting. In particular we use Safety Gym as our test-bed, allowing for a more direct comparison of AMBS with popular constrained RL algorithms. We also provide strong probabilistic safety guarantees for the continuous setting. In addition, we propose two novel penalty techniques that directly modify the policy gradient, which empirically provide more stable convergence in our experiments.

Over the past years, Machine Learning-as-a-Service (MLaaS) has received a surging demand for supporting Machine Learning-driven services to offer revolutionized user experience across diverse application areas. MLaaS provides inference service with low inference latency based on an ML model trained using a dataset collected from numerous individual data owners. Recently, for the sake of data owners' privacy and to comply with the "right to be forgotten (RTBF)" as enacted by data protection legislation, many machine unlearning methods have been proposed to remove data owners' data from trained models upon their unlearning requests. However, despite their promising efficiency, almost all existing machine unlearning methods handle unlearning requests independently from inference requests, which unfortunately introduces a new security issue of inference service obsolescence and a privacy vulnerability of undesirable exposure for machine unlearning in MLaaS. In this paper, we propose the ERASER framework for machinE unleaRning in MLaAS via an inferencE seRving-aware approach. ERASER strategically choose appropriate unlearning execution timing to address the inference service obsolescence issue. A novel inference consistency certification mechanism is proposed to avoid the violation of RTBF principle caused by postponed unlearning executions, thereby mitigating the undesirable exposure vulnerability. ERASER offers three groups of design choices to allow for tailor-made variants that best suit the specific environments and preferences of various MLaaS systems. Extensive empirical evaluations across various settings confirm ERASER's effectiveness, e.g., it can effectively save up to 99% of inference latency and 31% of computation overhead over the inference-oblivion baseline.

The number of Language Models (LMs) dedicated to processing scientific text is on the rise. Keeping pace with the rapid growth of scientific LMs (SciLMs) has become a daunting task for researchers. To date, no comprehensive surveys on SciLMs have been undertaken, leaving this issue unaddressed. Given the constant stream of new SciLMs, appraising the state-of-the-art and how they compare to each other remain largely unknown. This work fills that gap and provides a comprehensive review of SciLMs, including an extensive analysis of their effectiveness across different domains, tasks and datasets, and a discussion on the challenges that lie ahead.

State-of-the-Art (SotA) hardware implementations of Deep Neural Networks (DNNs) incur high latencies and costs. Binary Neural Networks (BNNs) are potential alternative solutions to realize faster implementations without losing accuracy. In this paper, we first present a new data mapping, called TacitMap, suited for BNNs implemented based on a Computation-In-Memory (CIM) architecture. TacitMap maximizes the use of available parallelism, while CIM architecture eliminates the data movement overhead. We then propose a hardware accelerator based on optical phase change memory (oPCM) called EinsteinBarrier. Ein-steinBarrier incorporates TacitMap and adds an extra dimension for parallelism through wavelength division multiplexing, leading to extra latency reduction. The simulation results show that, compared to the SotA CIM baseline, TacitMap and EinsteinBarrier significantly improve execution time by up to ~154x and ~3113x, respectively, while also maintaining the energy consumption within 60% of that in the CIM baseline.

Recent advancements have significantly augmented the reasoning capabilities of Large Language Models (LLMs) through various methodologies, especially chain-of-thought (CoT) reasoning. However, previous methods fail to address reasoning errors in intermediate steps, leading to accumulative errors.In this paper, we propose Deductive Beam Search (DBS), which seamlessly integrates CoT and deductive reasoning with step-wise beam search for LLMs. Our approach deploys a verifier, verifying the deducibility of a reasoning step and its premises, thus alleviating the error accumulation. Furthermore, we introduce a scalable and labor-free data construction method to amplify our model's verification capabilities. Extensive experiments demonstrate that our approach significantly enhances the base performance of LLMs of various scales (7B, 13B, 70B, and ChatGPT) across 8 reasoning datasets from 3 diverse reasoning genres, including arithmetic, commonsense, and symbolic. Moreover, our analysis proves DBS's capability of detecting diverse and subtle reasoning errors and robustness on different model scales.

Large Language Models have emerged as prime candidates to tackle misinformation mitigation. However, existing approaches struggle with hallucinations and overconfident predictions. We propose an uncertainty quantification framework that leverages both direct confidence elicitation and sampled-based consistency methods to provide better calibration for NLP misinformation mitigation solutions. We first investigate the calibration of sample-based consistency methods that exploit distinct features of consistency across sample sizes and stochastic levels. Next, we evaluate the performance and distributional shift of a robust numeric verbalization prompt across single vs. two-step confidence elicitation procedure. We also compare the performance of the same prompt with different versions of GPT and different numerical scales. Finally, we combine the sample-based consistency and verbalized methods to propose a hybrid framework that yields a better uncertainty estimation for GPT models. Overall, our work proposes novel uncertainty quantification methods that will improve the reliability of Large Language Models in misinformation mitigation applications.

Extensive fine-tuning on Large Language Models does not always yield better results. Oftentimes, models tend to get better at imitating one form of data without gaining greater reasoning ability and may even end up losing some intelligence. Here I introduce EvoMerge, a systematic approach to large language model training and merging. Leveraging model merging for weight crossover and fine-tuning for weight mutation, EvoMerge establishes an evolutionary process aimed at pushing models beyond the limits of conventional fine-tuning.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

北京阿比特科技有限公司