亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Solutions of certain partial differential equations (PDEs) are often represented by the steepest descent curves of corresponding functionals. Minimizing movement scheme was developed in order to study such curves in metric spaces. Especially, Jordan-Kinderlehrer-Otto studied the Fokker-Planck equation in this way with respect to the Wasserstein metric space. In this paper, we propose a deep learning-based minimizing movement scheme for approximating the solutions of PDEs. The proposed method is highly scalable for high-dimensional problems as it is free of mesh generation. We demonstrate through various kinds of numerical examples that the proposed method accurately approximates the solutions of PDEs by finding the steepest descent direction of a functional even in high dimensions.

相關內容

We propose the homotopic policy mirror descent (HPMD) method for solving discounted, infinite horizon MDPs with finite state and action space, and study its policy convergence. We report three properties that seem to be new in the literature of policy gradient methods: (1) The policy first converges linearly, then superlinearly with order $\gamma^{-2}$ to the set of optimal policies, after $\mathcal{O}(\log(1/\Delta^*))$ number of iterations, where $\Delta^*$ is defined via a gap quantity associated with the optimal state-action value function; (2) HPMD also exhibits last-iterate convergence, with the limiting policy corresponding exactly to the optimal policy with the maximal entropy for every state. No regularization is added to the optimization objective and hence the second observation arises solely as an algorithmic property of the homotopic policy gradient method. (3) For the stochastic HPMD method, we further demonstrate a better than $\mathcal{O}(|\mathcal{S}| |\mathcal{A}| / \epsilon^2)$ sample complexity for small optimality gap $\epsilon$, when assuming a generative model for policy evaluation.

We study the shape reconstruction of an inclusion from the {faraway} measurement of the associated electric field. This is an inverse problem of practical importance in biomedical imaging and is known to be notoriously ill-posed. By incorporating Drude's model of the permittivity parameter, we propose a novel reconstruction scheme by using the plasmon resonance with a significantly enhanced resonant field. We conduct a delicate sensitivity analysis to establish a sharp relationship between the sensitivity of the reconstruction and the plasmon resonance. It is shown that when plasmon resonance occurs, the sensitivity functional blows up and hence ensures a more robust and effective construction. Then we combine the Tikhonov regularization with the Laplace approximation to solve the inverse problem, which is an organic hybridization of the deterministic and stochastic methods and can quickly calculate the minimizer while capture the uncertainty of the solution. We conduct extensive numerical experiments to illustrate the promising features of the proposed reconstruction scheme.

This work investigates the use of neural networks admitting high-order derivatives for modeling dynamic variations of smooth implicit surfaces. For this purpose, it extends the representation of differentiable neural implicit surfaces to higher dimensions, which opens up mechanisms that allow to exploit geometric transformations in many settings, from animation and surface evolution to shape morphing and design galleries. The problem is modeled by a $k$-parameter family of surfaces $S_c$, specified as a neural network function $f : \mathbb{R}^3 \times \mathbb{R}^k \rightarrow \mathbb{R}$, where $S_c$ is the zero-level set of the implicit function $f(\cdot, c) : \mathbb{R}^3 \rightarrow \mathbb{R} $, with $c \in \mathbb{R}^k$, with variations induced by the control variable $c$. In that context, restricted to each coordinate of $\mathbb{R}^k$, the underlying representation is a neural homotopy which is the solution of a general partial differential equation.

Trefftz methods are high-order Galerkin schemes in which all discrete functions are elementwise solution of the PDE to be approximated. They are viable only when the PDE is linear and its coefficients are piecewise constant. We introduce a 'quasi-Trefftz' discontinuous Galerkin method for the discretisation of the acoustic wave equation with piecewise-smooth wavespeed: the discrete functions are elementwise approximate PDE solutions. We show that the new discretisation enjoys the same excellent approximation properties as the classical Trefftz one, and prove stability and high-order convergence of the DG scheme. We introduce polynomial basis functions for the new discrete spaces and describe a simple algorithm to compute them. The technique we propose is inspired by the generalised plane waves previously developed for time-harmonic problems with variable coefficients; it turns out that in the case of the time-domain wave equation under consideration the quasi-Trefftz approach allows for polynomial basis functions.

Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady state solutions of hyperbolic partial differential equations (PDEs). As other types of fast sweeping schemes, fixed-point fast sweeping methods use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of hyperbolic PDEs in a certain direction simultaneously in each sweeping order. The resulting iterative schemes have fast convergence rate to steady state solutions. Moreover, an advantage of fixed-point fast sweeping methods over other types of fast sweeping methods is that they are explicit and do not involve inverse operation of any nonlinear local system. Hence they are robust and flexible, and have been combined with high order accurate weighted essentially non-oscillatory (WENO) schemes to solve various hyperbolic PDEs in the literature. For multidimensional nonlinear problems, high order fixed-point fast sweeping WENO methods still require quite large amount of computational costs. In this technical note, we apply sparse-grid techniques, an effective approximation tool for multidimensional problems, to fixed-point fast sweeping WENO method for reducing its computational costs. Here we focus on a robust Runge-Kutta (RK) type fixed-point fast sweeping WENO scheme with third order accuracy (Zhang et al. 2006 [33]), for solving Eikonal equations, an important class of static Hamilton-Jacobi (H-J) equations. Numerical experiments on solving multidimensional Eikonal equations and a more general static H-J equation are performed to show that the sparse grid computations of the fixed-point fast sweeping WENO scheme achieve large savings of CPU times on refined meshes, and at the same time maintain comparable accuracy and resolution with those on corresponding regular single grids.

We derive a posteriori error estimates for a fully discrete finite element approximation of the stochastic Cahn-Hilliard equation. The a posteriori bound is obtained by a splitting of the equation into a linear stochastic partial differential equation (SPDE) and a nonlinear random partial differential equation (RPDE). The resulting estimate is robust with respect to the interfacial width parameter and is computable since it involves the discrete principal eigenvalue of a linearized (stochastic) Cahn-Hilliard operator. Furthermore, the estimate is robust with respect to topological changes as well as the intensity of the stochastic noise. We provide numerical simulations to demonstrate the practicability of the proposed adaptive algorithm.

The classic DQN algorithm is limited by the overestimation bias of the learned Q-function. Subsequent algorithms have proposed techniques to reduce this problem, without fully eliminating it. Recently, the Maxmin and Ensemble Q-learning algorithms have used different estimates provided by the ensembles of learners to reduce the overestimation bias. Unfortunately, these learners can converge to the same point in the parametric or representation space, falling back to the classic single neural network DQN. In this paper, we describe a regularization technique to maximize ensemble diversity in these algorithms. We propose and compare five regularization functions inspired from economics theory and consensus optimization. We show that the regularized approach significantly outperforms the Maxmin and Ensemble Q-learning algorithms as well as non-ensemble baselines.

Swapping text in scene images while preserving original fonts, colors, sizes and background textures is a challenging task due to the complex interplay between different factors. In this work, we present SwapText, a three-stage framework to transfer texts across scene images. First, a novel text swapping network is proposed to replace text labels only in the foreground image. Second, a background completion network is learned to reconstruct background images. Finally, the generated foreground image and background image are used to generate the word image by the fusion network. Using the proposing framework, we can manipulate the texts of the input images even with severe geometric distortion. Qualitative and quantitative results are presented on several scene text datasets, including regular and irregular text datasets. We conducted extensive experiments to prove the usefulness of our method such as image based text translation, text image synthesis, etc.

Scene coordinate regression has become an essential part of current camera re-localization methods. Different versions, such as regression forests and deep learning methods, have been successfully applied to estimate the corresponding camera pose given a single input image. In this work, we propose to regress the scene coordinates pixel-wise for a given RGB image by using deep learning. Compared to the recent methods, which usually employ RANSAC to obtain a robust pose estimate from the established point correspondences, we propose to regress confidences of these correspondences, which allows us to immediately discard erroneous predictions and improve the initial pose estimates. Finally, the resulting confidences can be used to score initial pose hypothesis and aid in pose refinement, offering a generalized solution to solve this task.

The Deep Q-Network proposed by Mnih et al. [2015] has become a benchmark and building point for much deep reinforcement learning research. However, replicating results for complex systems is often challenging since original scientific publications are not always able to describe in detail every important parameter setting and software engineering solution. In this paper, we present results from our work reproducing the results of the DQN paper. We highlight key areas in the implementation that were not covered in great detail in the original paper to make it easier for researchers to replicate these results, including termination conditions and gradient descent algorithms. Finally, we discuss methods for improving the computational performance and provide our own implementation that is designed to work with a range of domains, and not just the original Arcade Learning Environment [Bellemare et al., 2013].

北京阿比特科技有限公司