Evaluations are critical for understanding the capabilities of large language models (LLMs). Fundamentally, evaluations are experiments; but the literature on evaluations has largely ignored the literature from other sciences on experiment analysis and planning. This article shows researchers with some training in statistics how to think about and analyze data from language model evaluations. Conceptualizing evaluation questions as having been drawn from an unseen super-population, we present formulas for analyzing evaluation data, measuring differences between two models, and planning an evaluation experiment. We make a number of specific recommendations for running language model evaluations and reporting experiment results in a way that minimizes statistical noise and maximizes informativeness.
The rise of large language models (LLMs) has significantly advanced various natural language processing (NLP) tasks. However, the resource demands of these models pose substantial challenges. Structured pruning is an effective approach to reducing model size, but it often results in significant accuracy degradation, necessitating parameter updates to adapt. Unfortunately, such fine-tuning requires substantial memory, which limits its applicability. To address these challenges, we introduce quantization into the structured pruning framework to reduce memory consumption during both fine-tuning and inference. However, the combined errors from pruning and quantization increase the difficulty of fine-tuning, requiring a more refined quantization scheme. To this end, we propose QPruner, a novel framework that employs structured pruning to reduce model size, followed by a layer-wise mixed-precision quantization scheme. Quantization precisions are assigned to each layer based on their importance to the target task, and Bayesian optimization is employed to refine precision allocation strategies, ensuring a balance between model accuracy and memory efficiency. Extensive experiments on benchmark datasets demonstrate that QPruner significantly outperforms existing methods in memory savings while maintaining or improving model performance.
Recent advancements in large language models (LLMs) have significantly enhanced their coding capabilities. However, existing benchmarks predominantly focused on simplified or isolated aspects of coding, such as single-file code generation or repository issue debugging, falling short of measuring the full spectrum of challenges raised by real-world programming activities. In this case study, we explore the performance of LLMs across the entire software development lifecycle with DevEval, encompassing stages including software design, environment setup, implementation, acceptance testing, and unit testing. DevEval features four programming languages, multiple domains, high-quality data collection, and carefully designed and verified metrics for each task. Empirical studies show that current LLMs, including GPT-4, fail to solve the challenges presented within DevEval. Our findings offer actionable insights for the future development of LLMs toward real-world programming applications.
Natural language question answering (QA) over structured data sources such as tables and knowledge graphs have been widely investigated, especially with Large Language Models (LLMs) in recent years. The main solutions include question to formal query parsing and retrieval-based answer generation. However, current methods of the former often suffer from weak generalization, failing to dealing with multi-types of sources, while the later is limited in trustfulness. In this paper, we propose TrustUQA, a trustful QA framework that can simultaneously support multiple types of structured data in a unified way. To this end, it adopts an LLM-friendly and unified knowledge representation method called Condition Graph(CG), and uses an LLM and demonstration-based two-level method for CG querying. For enhancement, it is also equipped with dynamic demonstration retrieval. We have evaluated TrustUQA with 5 benchmarks covering 3 types of structured data. It outperforms 2 existing unified structured data QA methods. In comparison with the baselines that are specific to one data type, it achieves state-of-the-art on 2 of the datasets. Further more, we have demonstrated the potential of our method for more general QA tasks, QA over mixed structured data and QA across structured data. The code is available at //github.com/zjukg/TrustUQA.
Retrieval-augmented large language models (LLMs) have been remarkably competent in various NLP tasks. However, it was observed by previous works that retrieval is not always helpful, especially when the LLM is already knowledgeable on the query to answer. Motivated by this, Adaptive Retrieval-Augmented Generation (ARAG) studies retrieving only when the knowledge asked by the query is absent in the LLM. Previous works of ARAG either require accessing the pre-training corpus or prompting with additional model inferences. Aiming to avoid such drawbacks, we propose to determine whether the model is knowledgeable on a query via inspecting the (contextualized) pre-trained token embeddings of LLMs. We hypothesize that such embeddings capture rich information on the model's intrinsic knowledge base, which enables an efficient way of judging the necessity to retrieve from an external corpus. Extensive experiments demonstrate our ARAG approach's superior performance across various benchmarks.
The emergence of Large Language Models (LLMs) has revolutionized many fields, not only traditional natural language processing (NLP) tasks. Recently, research on applying LLMs to the database field has been booming, and as a typical non-relational database, the use of LLMs in graph database research has naturally gained significant attention. Recent efforts have increasingly focused on leveraging LLMs to translate natural language into graph query language (NL2GQL). Although some progress has been made, these methods have clear limitations, such as their reliance on streamlined processes that often overlook the potential of LLMs to autonomously plan and collaborate with other LLMs in tackling complex NL2GQL challenges. To address this gap, we propose NAT-NL2GQL, a novel multi-agent framework for translating natural language to graph query language. Specifically, our framework consists of three synergistic agents: the Preprocessor agent, the Generator agent, and the Refiner agent. The Preprocessor agent manages data processing as context, including tasks such as name entity recognition, query rewriting, path linking, and the extraction of query-related schemas. The Generator agent is a fine-tuned LLM trained on NL-GQL data, responsible for generating corresponding GQL statements based on queries and their related schemas. The Refiner agent is tasked with refining the GQL or context using error information obtained from the GQL execution results. Given the scarcity of high-quality open-source NL2GQL datasets based on nGQL syntax, we developed StockGQL, a dataset constructed from a financial market graph database. It is available at: //github.com/leonyuancode/StockGQL. Experimental results on the StockGQL and SpCQL datasets reveal that our method significantly outperforms baseline approaches, highlighting its potential for advancing NL2GQL research.
To ensure and monitor large language models (LLMs) reliably, various evaluation metrics have been proposed in the literature. However, there is little research on prescribing a methodology to identify a robust threshold on these metrics even though there are many serious implications of an incorrect choice of the thresholds during deployment of the LLMs. Translating the traditional model risk management (MRM) guidelines within regulated industries such as the financial industry, we propose a step-by-step recipe for picking a threshold for a given LLM evaluation metric. We emphasize that such a methodology should start with identifying the risks of the LLM application under consideration and risk tolerance of the stakeholders. We then propose concrete and statistically rigorous procedures to determine a threshold for the given LLM evaluation metric using available ground-truth data. As a concrete example to demonstrate the proposed methodology at work, we employ it on the Faithfulness metric, as implemented in various publicly available libraries, using the publicly available HaluBench dataset. We also lay a foundation for creating systematic approaches to select thresholds, not only for LLMs but for any GenAI applications.
Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
A sememe is defined as the minimum semantic unit of human languages. Sememe knowledge bases (KBs), which contain words annotated with sememes, have been successfully applied to many NLP tasks. However, existing sememe KBs are built on only a few languages, which hinders their widespread utilization. To address the issue, we propose to build a unified sememe KB for multiple languages based on BabelNet, a multilingual encyclopedic dictionary. We first build a dataset serving as the seed of the multilingual sememe KB. It manually annotates sememes for over $15$ thousand synsets (the entries of BabelNet). Then, we present a novel task of automatic sememe prediction for synsets, aiming to expand the seed dataset into a usable KB. We also propose two simple and effective models, which exploit different information of synsets. Finally, we conduct quantitative and qualitative analyses to explore important factors and difficulties in the task. All the source code and data of this work can be obtained on //github.com/thunlp/BabelNet-Sememe-Prediction.