亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A Markov decision process can be parameterized by a transition kernel and a reward function. Both play essential roles in the study of reinforcement learning as evidenced by their presence in the Bellman equations. In our inquiry of various kinds of "costs" associated with reinforcement learning inspired by the demands in robotic applications, rewards are central to understanding the structure of a Markov decision process and reward-centric notions can elucidate important concepts in reinforcement learning. Specifically, we study the sample complexity of policy evaluation and develop a novel estimator with an instance-specific error bound of $\tilde{O}(\sqrt{\frac{\tau_s}{n}})$ for estimating a single state value. Under the online regret minimization setting, we refine the transition-based MDP constant, diameter, into a reward-based constant, maximum expected hitting cost, and with it, provide a theoretical explanation for how a well-known technique, potential-based reward shaping, could accelerate learning with expert knowledge. In an attempt to study safe reinforcement learning, we model hazardous environments with irrecoverability and proposed a quantitative notion of safe learning via reset efficiency. In this setting, we modify a classic algorithm to account for resets achieving promising preliminary numerical results. Lastly, for MDPs with multiple reward functions, we develop a planning algorithm that computationally efficiently finds Pareto-optimal stochastic policies.

相關內容

The study of Deep Network (DN) training dynamics has largely focused on the evolution of the loss function, evaluated on or around train and test set data points. In fact, many DN phenomenon were first introduced in literature with that respect, e.g., double descent, grokking. In this study, we look at the training dynamics of the input space partition or linear regions formed by continuous piecewise affine DNs, e.g., networks with (leaky)ReLU nonlinearities. First, we present a novel statistic that encompasses the local complexity (LC) of the DN based on the concentration of linear regions inside arbitrary dimensional neighborhoods around data points. We observe that during training, the LC around data points undergoes a number of phases, starting with a decreasing trend after initialization, followed by an ascent and ending with a final descending trend. Using exact visualization methods, we come across the perplexing observation that during the final LC descent phase of training, linear regions migrate away from training and test samples towards the decision boundary, making the DN input-output nearly linear everywhere else. We also observe that the different LC phases are closely related to the memorization and generalization performance of the DN, especially during grokking.

Partially observable Markov decision processes (POMDPs) provide a flexible representation for real-world decision and control problems. However, POMDPs are notoriously difficult to solve, especially when the state and observation spaces are continuous or hybrid, which is often the case for physical systems. While recent online sampling-based POMDP algorithms that plan with observation likelihood weighting have shown practical effectiveness, a general theory characterizing the approximation error of the particle filtering techniques that these algorithms use has not previously been proposed. Our main contribution is bounding the error between any POMDP and its corresponding finite sample particle belief MDP (PB-MDP) approximation. This fundamental bridge between PB-MDPs and POMDPs allows us to adapt any sampling-based MDP algorithm to a POMDP by solving the corresponding particle belief MDP, thereby extending the convergence guarantees of the MDP algorithm to the POMDP. Practically, this is implemented by using the particle filter belief transition model as the generative model for the MDP solver. While this requires access to the observation density model from the POMDP, it only increases the transition sampling complexity of the MDP solver by a factor of $\mathcal{O}(C)$, where $C$ is the number of particles. Thus, when combined with sparse sampling MDP algorithms, this approach can yield algorithms for POMDPs that have no direct theoretical dependence on the size of the state and observation spaces. In addition to our theoretical contribution, we perform five numerical experiments on benchmark POMDPs to demonstrate that a simple MDP algorithm adapted using PB-MDP approximation, Sparse-PFT, achieves performance competitive with other leading continuous observation POMDP solvers.

Byzantine agreement tasks have been studied extensively through many diverse frameworks ranging from epistemic modal logic to combinatorial, topological and even game theoretical approaches. Among byzantine agreement tasks, firing rebels with relay is of particular interest, since it is a basic primitive necessary for solving more complex tasks such as Consistent Broadcast. The epistemic logic approach has yielded both necessary conditions and sufficient knowledge conditions for solving firing rebels with relay. However, these conditions are stated in terms of knowledge and in principle do not explore the conditions on the communication structure which is often assumed to be complete. That is, any process is assumed to be capable of communicating with any other process at any time. In this paper, we characterize byzantine firing rebels solvability with and without relay in terms of the communication structure of the system. We define a relation between asynchronous message schedules and directed graph sequences, which we call network abstractions. This allows us to capture the message relay capabilities of the system into a combinatorial object. Although there are some similarities between network abstractions and causal cones, there is a fundamental difference. Namely, causal cones allow only to look at events in the past, while network abstractions allow us to reason about future possibilities. Thus enabling us to reason about liveness properties, which can not be expressed by looking only at past events. Furthermore, we formalize our characterization by using a temporal epistemic logic for byzantine systems. Such formulation constitutes the necessary and sufficient a-priori knowledge regarding network connectivity for solving firing rebels with relay.

We consider the fair division of indivisible items using the maximin shares measure. Recent work on the topic has focused on extending results beyond the class of additive valuation functions. In this spirit, we study the case where the items form an hereditary set system. We present a simple algorithm that allocates each agent a bundle of items whose value is at least $0.3636$ times the maximin share of the agent. This improves upon the current best known guarantee of $0.2$ due to Ghodsi et al. The analysis of the algorithm is almost tight; we present an instance where the algorithm provides a guarantee of at most $0.3738$. We also show that the algorithm can be implemented in polynomial time given a valuation oracle for each agent.

Quantification represents the problem of predicting class distributions in a dataset. It also represents a growing research field in supervised machine learning, for which a large variety of different algorithms has been proposed in recent years. However, a comprehensive empirical comparison of quantification methods that supports algorithm selection is not available yet. In this work, we close this research gap by conducting a thorough empirical performance comparison of 24 different quantification methods on overall more than 40 data sets, considering binary as well as multiclass quantification settings. We observe that no single algorithm generally outperforms all competitors, but identify a group of methods including the threshold selection-based Median Sweep and TSMax methods, the DyS framework, and Friedman's method that performs best in the binary setting. For the multiclass setting, we observe that a different group of algorithms yields good performance, including the Generalized Probabilistic Adjusted Count, the readme method, the energy distance minimization method, the EM algorithm for quantification, and Friedman's method. We also find that tuning the underlying classifiers has in most cases only a limited impact on the quantification performance. More generally, we find that the performance on multiclass quantification is inferior to the results obtained in the binary setting. Our results can guide practitioners who intend to apply quantification algorithms and help researchers to identify opportunities for future research.

Formal verification of intelligent agents is often computationally infeasible due to state-space explosion. We present a tool for reducing the impact of the explosion by means of state abstraction that is (a) easy to use and understand by non-experts, and (b) agent-based in the sense that it operates on a modular representation of the system, rather than on its huge explicit state model.

We present a series of long-context LLMs that support effective context windows of up to 32,768 tokens. Our model series are built through continual pretraining from Llama 2 with longer training sequences and on a dataset where long texts are upsampled. We perform extensive evaluation on language modeling, synthetic context probing tasks, and a wide range of research benchmarks. On research benchmarks, our models achieve consistent improvements on most regular tasks and significant improvements on long-context tasks over Llama 2. Notably, with a cost-effective instruction tuning procedure that does not require human-annotated long instruction data, the 70B variant can already surpass gpt-3.5-turbo-16k's overall performance on a suite of long-context tasks. Alongside these results, we provide an in-depth analysis on the individual components of our method. We delve into Llama's position encodings and discuss its limitation in modeling long dependencies. We also examine the impact of various design choices in the pretraining process, including the data mix and the training curriculum of sequence lengths -- our ablation experiments suggest that having abundant long texts in the pretrain dataset is not the key to achieving strong performance, and we empirically verify that long context continual pretraining is more efficient and similarly effective compared to pretraining from scratch with long sequences.

Guidance in conditional diffusion generation is of great importance for sample quality and controllability. However, existing guidance schemes are to be desired. On one hand, mainstream methods such as classifier guidance and classifier-free guidance both require extra training with labeled data, which is time-consuming and unable to adapt to new conditions. On the other hand, training-free methods such as universal guidance, though more flexible, have yet to demonstrate comparable performance. In this work, through a comprehensive investigation into the design space, we show that it is possible to achieve significant performance improvements over existing guidance schemes by leveraging off-the-shelf classifiers in a training-free fashion, enjoying the best of both worlds. Employing calibration as a general guideline, we propose several pre-conditioning techniques to better exploit pretrained off-the-shelf classifiers for guiding diffusion generation. Extensive experiments on ImageNet validate our proposed method, showing that state-of-the-art diffusion models (DDPM, EDM, DiT) can be further improved (up to 20%) using off-the-shelf classifiers with barely any extra computational cost. With the proliferation of publicly available pretrained classifiers, our proposed approach has great potential and can be readily scaled up to text-to-image generation tasks. The code is available at //github.com/AlexMaOLS/EluCD/tree/main.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

北京阿比特科技有限公司