亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we analyse full discretizations of an initial boundary value problem (IBVP) related to reaction-diffusion equations. To avoid possible order reduction, the IBVP is first transformed into an IBVP with homogeneous boundary conditions (IBVPHBC) via a lifting of inhomogeneous Dirichlet, Neumann or mixed Dirichlet-Neumann boundary conditions. The IBVPHBC is discretized in time via the deferred correction method for the implicit midpoint rule and leads to a time-stepping scheme of order $2p+2$ of accuracy at the stage $p=0,1,2,\cdots $ of the correction. Each semi-discretized scheme results in a nonlinear elliptic equation for which the existence of a solution is proven using the Schaefer fixed point theorem. The elliptic equation corresponding to the stage $p$ of the correction is discretized by the Galerkin finite element method and gives a full discretization of the IBVPHBC. This fully discretized scheme is unconditionally stable with order $2p+2$ of accuracy in time. The order of accuracy in space is equal to the degree of the finite element used when the family of meshes considered is shape-regular while an increment of one order is proven for quasi-uniform family of meshes. Numerical tests with a bistable reaction-diffusion equation having a strong stiffness ratio and a linear reaction-diffusion equation addressing order reduction are performed and demonstrate the unconditional convergence of the method. The orders 2,4,6,8 and 10 of accuracy in time are achieved.

相關內容

Like many other biological processes, calcium dynamics in neurons containing an endoplasmic reticulum are governed by diffusion-reaction equations on interface-separated domains. Interface conditions are typically described by systems of ordinary differential equations that provide fluxes across the interfaces. Using the calcium model as an example of this class of ODE-flux boundary interface problems, we prove the existence, uniqueness and boundedness of the solution by applying comparison theorem, fundamental solution of the parabolic operator and a strategy used in Picard's existence theorem. Then we propose and analyze an efficient implicit-explicit finite element scheme which is implicit for the parabolic operator and explicit for the nonlinear terms. We show that the stability does not depend on the spatial mesh size. Also the optimal convergence rate in $H^1$ norm is obtained. Numerical experiments illustrate the theoretical results.

Continuous determinantal point processes (DPPs) are a class of repulsive point processes on $\mathbb{R}^d$ with many statistical applications. Although an explicit expression of their density is known, it is too complicated to be used directly for maximum likelihood estimation. In the stationary case, an approximation using Fourier series has been suggested, but it is limited to rectangular observation windows and no theoretical results support it. In this contribution, we investigate a different way to approximate the likelihood by looking at its asymptotic behaviour when the observation window grows towards $\mathbb{R}^d$. This new approximation is not limited to rectangular windows, is faster to compute than the previous one, does not require any tuning parameter, and some theoretical justifications are provided. It moreover provides an explicit formula for estimating the asymptotic variance of the associated estimator. The performances are assessed in a simulation study on standard parametric models on $\mathbb{R}^d$ and compare favourably to common alternative estimation methods for continuous DPPs.

We consider point sources in hyperbolic equations discretized by finite differences. If the source is stationary, appropriate source discretization has been shown to preserve the accuracy of the finite difference method. Moving point sources, however, pose two challenges that do not appear in the stationary case. First, the discrete source must not excite modes that propagate with the source velocity. Second, the discrete source spectrum amplitude must be independent of the source position. We derive a source discretization that meets these requirements and prove design-order convergence of the numerical solution for the one-dimensional advection equation. Numerical experiments indicate design-order convergence also for the acoustic wave equation in two dimensions. The source discretization covers on the order of $\sqrt{N}$ grid points on an $N$-point grid and is applicable for source trajectories that do not touch domain boundaries.

Given input-output pairs of an elliptic partial differential equation (PDE) in three dimensions, we derive the first theoretically-rigorous scheme for learning the associated Green's function $G$. By exploiting the hierarchical low-rank structure of $G$, we show that one can construct an approximant to $G$ that converges almost surely and achieves a relative error of $\mathcal{O}(\Gamma_\epsilon^{-1/2}\log^3(1/\epsilon)\epsilon)$ using at most $\mathcal{O}(\epsilon^{-6}\log^4(1/\epsilon))$ input-output training pairs with high probability, for any $0<\epsilon<1$. The quantity $0<\Gamma_\epsilon\leq 1$ characterizes the quality of the training dataset. Along the way, we extend the randomized singular value decomposition algorithm for learning matrices to Hilbert--Schmidt operators and characterize the quality of covariance kernels for PDE learning.

In this paper, a numerical scheme for a nonlinear McKendrick-von Foerster equation with diffusion in age (MV-D) with the Dirichlet boundary condition is proposed. The main idea to derive the scheme is to use the discretization based on the method of characteristics to the convection part, and the finite difference method to the rest of the terms. The nonlocal terms are dealt with the quadrature methods. As a result, an implicit scheme is obtained for the boundary value problem under consideration. The consistency and the convergence of the proposed numerical scheme is established. Moreover, numerical simulations are presented to validate the theoretical results.

In this paper, we present numerical procedures to compute solutions of partial differential equations posed on fractals. In particular, we consider the strong form of the equation using standard graph Laplacian matrices and also weak forms of the equation derived using standard length or area measure on a discrete approximation of the fractal set. We then introduce a numerical procedure to normalize the obtained diffusions, that is, a way to compute the renormalization constant needed in the definitions of the actual partial differential equation on the fractal set. A particular case that is studied in detail is the solution of the Dirichlet problem in the Sierpinski triangle. Other examples are also presented including a non-planar Hata tree.

As a parametric polynomial curve family, B\'ezier curves are widely used in safe and smooth motion design of intelligent robotic systems from flying drones to autonomous vehicles to robotic manipulators. In such motion planning settings, the critical features of high-order B\'ezier curves such as curve length, distance-to-collision, maximum curvature/velocity/acceleration are either numerically computed at a high computational cost or inexactly approximated by discrete samples. To address these issues, in this paper we present a novel computationally efficient approach for adaptive approximation of high-order B\'ezier curves by multiple low-order B\'ezier segments at any desired level of accuracy that is specified in terms of a B\'ezier metric. Accordingly, we introduce a new B\'ezier degree reduction method, called parameterwise matching reduction, that approximates B\'ezier curves more accurately compared to the standard least squares and Taylor reduction methods. We also propose a new B\'ezier metric, called the maximum control-point distance, that can be computed analytically, has a strong equivalence relation with other existing B\'ezier metrics, and defines a geometric relative bound between B\'ezier curves. We provide extensive numerical evidence to demonstrate the effectiveness of our proposed B\'ezier approximation approach. As a rule of thumb, based on the degree-one matching reduction error, we conclude that an $n^\text{th}$-order B\'ezier curve can be accurately approximated by $3(n-1)$ quadratic and $6(n-1)$ linear B\'ezier segments, which is fundamental for B\'ezier discretization.

We prove upper and lower bounds on the minimal spherical dispersion, improving upon previous estimates obtained by Rote and Tichy [Spherical dispersion with an application to polygonal approximation of curves, Anz. \"Osterreich. Akad. Wiss. Math.-Natur. Kl. 132 (1995), 3--10]. In particular, we see that the inverse $N(\varepsilon,d)$ of the minimal spherical dispersion is, for fixed $\varepsilon>0$, linear in the dimension $d$ of the ambient space. We also derive upper and lower bounds on the expected dispersion for points chosen independently and uniformly at random from the Euclidean unit sphere. In terms of the corresponding inverse $\widetilde{N}(\varepsilon,d)$, our bounds are optimal with respect to the dependence on $\varepsilon$.

We consider an adaptive multiresolution-based lattice Boltzmann scheme, which we have recently introduced and studied from the perspective of the error control and the theory of the equivalent equations. This numerical strategy leads to high compression rates, error control and its high accuracy has been explained on uniform and dynamically adaptive grids. However, one key issue with non-uniform meshes within the framework of lattice Boltzmann schemes is to properly handle acoustic waves passing through a level jump of the grid. It usually yields spurious effects, in particular reflected waves. In this paper, we propose a simple mono-dimensional test-case for the linear wave equation with a fixed adapted mesh characterized by a potentially large level jump. We investigate this configuration with our original strategy and prove that we can handle and control the amplitude of the reflected wave, which is of fourth order in the space step of the finest mesh. Numerical illustrations show that the proposed strategy outperforms the existing methods in the literature and allow to assess the ability of the method to handle the mesh jump properly.

We couple the L1 discretization for Caputo derivative in time with spectral Galerkin method in space to devise a scheme that solves quasilinear subdiffusion equations. Both the diffusivity and the source are allowed to be nonlinear functions of the solution. We prove method's stability and convergence with spectral accuracy in space. The temporal order depends on solution's regularity in time. Further, we support our results with numerical simulations that utilize parallelism for spatial discretization. Moreover, as a side result we find asymptotic exact values of error constants along with their remainders for discretizations of Caputo derivative and fractional integrals. These constants are the smallest possible which improves the previously established results from the literature.

北京阿比特科技有限公司