亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Diabetic Retinopathy (DR), a prevalent and severe complication of diabetes, affects millions of individuals globally, underscoring the need for accurate and timely diagnosis. Recent advancements in imaging technologies, such as Ultra-WideField Color Fundus Photography (UWF-CFP) imaging and Optical Coherence Tomography Angiography (OCTA), provide opportunities for the early detection of DR but also pose significant challenges given the disparate nature of the data they produce. This study introduces a novel multimodal approach that leverages these imaging modalities to notably enhance DR classification. Our approach integrates 2D UWF-CFP images and 3D high-resolution 6x6 mm$^3$ OCTA (both structure and flow) images using a fusion of ResNet50 and 3D-ResNet50 models, with Squeeze-and-Excitation (SE) blocks to amplify relevant features. Additionally, to increase the model's generalization capabilities, a multimodal extension of Manifold Mixup, applied to concatenated multimodal features, is implemented. Experimental results demonstrate a remarkable enhancement in DR classification performance with the proposed multimodal approach compared to methods relying on a single modality only. The methodology laid out in this work holds substantial promise for facilitating more accurate, early detection of DR, potentially improving clinical outcomes for patients.

相關內容

We consider the problem of detecting causal relationships between discrete time series, in the presence of potential confounders. A hypothesis test is introduced for identifying the temporally causal influence of $(x_n)$ on $(y_n)$, causally conditioned on a possibly confounding third time series $(z_n)$. Under natural Markovian modeling assumptions, it is shown that the null hypothesis, corresponding to the absence of temporally causal influence, is equivalent to the underlying `causal conditional directed information rate' being equal to zero. The plug-in estimator for this functional is identified with the log-likelihood ratio test statistic for the desired test. This statistic is shown to be asymptotically normal under the alternative hypothesis and asymptotically $\chi^2$ distributed under the null, facilitating the computation of $p$-values when used on empirical data. The effectiveness of the resulting hypothesis test is illustrated on simulated data, validating the underlying theory. The test is also employed in the analysis of spike train data recorded from neurons in the V4 and FEF brain regions of behaving animals during a visual attention task. There, the test results are seen to identify interesting and biologically relevant information.

Multi-Object Tracking (MOT) remains a vital component of intelligent video analysis, which aims to locate targets and maintain a consistent identity for each target throughout a video sequence. Existing works usually learn a discriminative feature representation, such as motion and appearance, to associate the detections across frames, which are easily affected by mutual occlusion and background clutter in practice. In this paper, we propose a simple yet effective two-stage feature learning paradigm to jointly learn single-shot and multi-shot features for different targets, so as to achieve robust data association in the tracking process. For the detections without being associated, we design a novel single-shot feature learning module to extract discriminative features of each detection, which can efficiently associate targets between adjacent frames. For the tracklets being lost several frames, we design a novel multi-shot feature learning module to extract discriminative features of each tracklet, which can accurately refind these lost targets after a long period. Once equipped with a simple data association logic, the resulting VisualTracker can perform robust MOT based on the single-shot and multi-shot feature representations. Extensive experimental results demonstrate that our method has achieved significant improvements on MOT17 and MOT20 datasets while reaching state-of-the-art performance on DanceTrack dataset.

Foundational models, pretrained on a large scale, have demonstrated substantial success across non-medical domains. However, training these models typically requires large, comprehensive datasets, which contrasts with the smaller and more heterogeneous datasets common in biomedical imaging. Here, we propose a multi-task learning strategy that decouples the number of training tasks from memory requirements. We trained a Universal bioMedical PreTrained model (UMedPT) on a multi-task database including tomographic, microscopic, and X-ray images, with various labelling strategies such as classification, segmentation, and object detection. The UMedPT foundational model outperformed ImageNet pretraining and the previous state-of-the-art models. For tasks related to the pretraining database, it maintained its performance with only 1% of the original training data and without fine-tuning. For out-of-domain tasks it required not more than 50% of the original training data. In an external independent validation imaging features extracted using UMedPT proved to be a new standard for cross-center transferability.

Social media platforms are rife with politically charged discussions. Therefore, accurately deciphering and predicting partisan biases using Large Language Models (LLMs) is increasingly critical. In this study, we address the challenge of understanding political bias in digitized discourse using LLMs. While traditional approaches often rely on finetuning separate models for each political faction, our work innovates by employing a singular, instruction-tuned LLM to reflect a spectrum of political ideologies. We present a comprehensive analytical framework, consisting of Partisan Bias Divergence Assessment and Partisan Class Tendency Prediction, to evaluate the model's alignment with real-world political ideologies in terms of stances, emotions, and moral foundations. Our findings reveal the model's effectiveness in capturing emotional and moral nuances, albeit with some challenges in stance detection, highlighting the intricacies and potential for refinement in NLP tools for politically sensitive contexts. This research contributes significantly to the field by demonstrating the feasibility and importance of nuanced political understanding in LLMs, particularly for applications requiring acute awareness of political bias.

Large Language Models (LLMs) employing Chain-of-Thought (CoT) prompting have broadened the scope for improving multi-step reasoning capabilities. Usually, answer calibration strategies such as step-level or path-level calibration play a vital role in multi-step reasoning. While effective, there remains a significant gap in our understanding of the key factors that drive their success. In this paper, we break down the design of recent answer calibration strategies and present a unified view which establishes connections between them. We then conduct a thorough evaluation on these strategies from a unified view, systematically scrutinizing step-level and path-level answer calibration across multiple paths. Our study holds the potential to illuminate key insights for optimizing multi-step reasoning with answer calibration.

Machine Translation (MT) continues to improve in quality and adoption, yet the inadvertent perpetuation of gender bias remains a significant concern. Despite numerous studies into gender bias in translations from gender-neutral languages such as Turkish into more strongly gendered languages like English, there are no benchmarks for evaluating this phenomenon or for assessing mitigation strategies. To address this gap, we introduce GATE X-E, an extension to the GATE (Rarrick et al., 2023) corpus, that consists of human translations from Turkish, Hungarian, Finnish, and Persian into English. Each translation is accompanied by feminine, masculine, and neutral variants for each possible gender interpretation. The dataset, which contains between 1250 and 1850 instances for each of the four language pairs, features natural sentences with a wide range of sentence lengths and domains, challenging translation rewriters on various linguistic phenomena. Additionally, we present an English gender rewriting solution built on GPT-3.5 Turbo and use GATE X-E to evaluate it. We open source our contributions to encourage further research on gender debiasing.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司