Existing image-text modality alignment in Vision Language Models (VLMs) treats each text token equally in an autoregressive manner. Despite being simple and effective, this method results in sub-optimal cross-modal alignment by over-emphasizing the text tokens that are less correlated with or even contradictory with the input images. In this paper, we advocate for assigning distinct contributions for each text token based on its visual correlation. Specifically, we present by contrasting image inputs, the difference in prediction logits on each text token provides strong guidance of visual correlation. We therefore introduce Contrastive ALignment (CAL), a simple yet effective re-weighting strategy that prioritizes training visually correlated tokens. Our experimental results demonstrate that CAL consistently improves different types of VLMs across different resolutions and model sizes on various benchmark datasets. Importantly, our method incurs minimal additional computational overhead, rendering it highly efficient compared to alternative data scaling strategies. Codes are available at //github.com/foundation-multimodal-models/CAL.
We present RodinHD, which can generate high-fidelity 3D avatars from a portrait image. Existing methods fail to capture intricate details such as hairstyles which we tackle in this paper. We first identify an overlooked problem of catastrophic forgetting that arises when fitting triplanes sequentially on many avatars, caused by the MLP decoder sharing scheme. To overcome this issue, we raise a novel data scheduling strategy and a weight consolidation regularization term, which improves the decoder's capability of rendering sharper details. Additionally, we optimize the guiding effect of the portrait image by computing a finer-grained hierarchical representation that captures rich 2D texture cues, and injecting them to the 3D diffusion model at multiple layers via cross-attention. When trained on 46K avatars with a noise schedule optimized for triplanes, the resulting model can generate 3D avatars with notably better details than previous methods and can generalize to in-the-wild portrait input.
Large Language Models (LLMs) have demonstrated remarkable capabilities across various applications, fundamentally reshaping the landscape of natural language processing (NLP) research. However, recent evaluation frameworks often rely on the output probabilities of LLMs for predictions, primarily due to computational constraints, diverging from real-world LLM usage scenarios. While widely employed, the efficacy of these probability-based evaluation strategies remains an open research question. This study aims to scrutinize the validity of such probability-based evaluation methods within the context of using LLMs for Multiple Choice Questions (MCQs), highlighting their inherent limitations. Our empirical investigation reveals that the prevalent probability-based evaluation method inadequately aligns with generation-based prediction. Furthermore, current evaluation frameworks typically assess LLMs through predictive tasks based on output probabilities rather than directly generating responses, owing to computational limitations. We illustrate that these probability-based approaches do not effectively correspond with generative predictions. The outcomes of our study can enhance the understanding of LLM evaluation methodologies and provide insights for future research in this domain.
Humans describe complex scenes with compositionality, using simple text descriptions enriched with links and relationships. While vision-language research has aimed to develop models with compositional understanding capabilities, this is not reflected yet in existing datasets which, for the most part, still use plain text to describe images. In this work, we propose a new annotation strategy, graph-based captioning (GBC) that describes an image using a labelled graph structure, with nodes of various types. The nodes in GBC are created using, in a first stage, object detection and dense captioning tools nested recursively to uncover and describe entity nodes, further linked together in a second stage by highlighting, using new types of nodes, compositions and relations among entities. Since all GBC nodes hold plain text descriptions, GBC retains the flexibility found in natural language, but can also encode hierarchical information in its edges. We demonstrate that GBC can be produced automatically, using off-the-shelf multimodal LLMs and open-vocabulary detection models, by building a new dataset, GBC10M, gathering GBC annotations for about 10M images of the CC12M dataset. We use GBC10M to showcase the wealth of node captions uncovered by GBC, as measured with CLIP training. We show that using GBC nodes' annotations -- notably those stored in composition and relation nodes -- results in significant performance boost on downstream models when compared to other dataset formats. To further explore the opportunities provided by GBC, we also propose a new attention mechanism that can leverage the entire GBC graph, with encouraging experimental results that show the extra benefits of incorporating the graph structure. Our datasets are released at \url{//huggingface.co/graph-based-captions}.
This paper evaluates whether large language models (LLMs) exhibit cognitive fan effects, similar to those discovered by Anderson in humans, after being pre-trained on human textual data. We conduct two sets of in-context recall experiments designed to elicit fan effects. Consistent with human results, we find that LLM recall uncertainty, measured via token probability, is influenced by the fan effect. Our results show that removing uncertainty disrupts the observed effect. The experiments suggest the fan effect is consistent whether the fan value is induced in-context or in the pre-training data. Finally, these findings provide in-silico evidence that fan effects and typicality are expressions of the same phenomena.
Reinforcement Learning with Human Feedback (RLHF) has achieved great success in aligning large language models (LLMs) with human preferences. Prevalent RLHF approaches are reward-based, following the Bradley-Terry (BT) model assumption, which may not fully capture the complexity of human preferences. In this paper, we explore RLHF under a general preference framework and approach it from a game-theoretic perspective. Specifically, we formulate the problem as a two-player game and propose a novel algorithm, iterative Nash policy optimization (INPO). The key idea is to let the policy play against itself via no-regret learning, thereby approximating the Nash policy. Unlike previous methods, INPO bypasses the need for estimating the expected win rate for individual responses, which typically incurs high computational or annotation costs. Instead, we introduce a new loss objective that is directly minimized over a preference dataset. We provide theoretical analysis for our approach and demonstrate its effectiveness through experiments on various representative benchmarks. With an LLaMA-3-8B-based SFT model, INPO achieves a 41.5% length-controlled win rate on AlpacaEval 2.0 and a 38.3% win rate on Arena-Hard, showing substantial improvement over the state-of-the-art iterative algorithm [Dong et al., 2024] under the BT model assumption. Additionally, our ablation study highlights the benefits of incorporating KL regularization for response length control.
Federated Learning is widely employed to tackle distributed sensitive data. Existing methods primarily focus on addressing in-federation data heterogeneity. However, we observed that they suffer from significant performance degradation when applied to unseen clients for out-of-federation (OOF) generalization. The recent attempts to address generalization to unseen clients generally struggle to scale up to large-scale distributed settings due to high communication or computation costs. Moreover, methods that scale well often demonstrate poor generalization capability. To achieve OOF-resiliency in a scalable manner, we propose Topology-aware Federated Learning (TFL) that leverages client topology - a graph representing client relationships - to effectively train robust models against OOF data. We formulate a novel optimization problem for TFL, consisting of two key modules: Client Topology Learning, which infers the client relationships in a privacy-preserving manner, and Learning on Client Topology, which leverages the learned topology to identify influential clients and harness this information into the FL optimization process to efficiently build robust models. Empirical evaluation on a variety of real-world datasets verifies TFL's superior OOF robustness and scalability.
Many emerging Artificial Intelligence (AI) applications require on-demand provisioning of large-scale computing, which can only be enabled by leveraging distributed computing services interconnected through networking. To address such increasing demand for networking to serve AI tasks, we investigate new scheduling strategies to improve communication efficiency and test them on a programmable testbed. We also show relevant challenges and research directions.
We introduce PoPreRo, the first dataset for Popularity Prediction of Romanian posts collected from Reddit. The PoPreRo dataset includes a varied compilation of post samples from five distinct subreddits of Romania, totaling 28,107 data samples. Along with our novel dataset, we introduce a set of competitive models to be used as baselines for future research. Interestingly, the top-scoring model achieves an accuracy of 61.35% and a macro F1 score of 60.60% on the test set, indicating that the popularity prediction task on PoPreRo is very challenging. Further investigations based on few-shot prompting the Falcon-7B Large Language Model also point in the same direction. We thus believe that PoPreRo is a valuable resource that can be used to evaluate models on predicting the popularity of social media posts in Romanian. We release our dataset at //github.com/ana-rogoz/PoPreRo.
As large language models (LLMs) start interacting with each other and generating an increasing amount of text online, it becomes crucial to better understand how information is transformed as it passes from one LLM to the next. While significant research has examined individual LLM behaviors, existing studies have largely overlooked the collective behaviors and information distortions arising from iterated LLM interactions. Small biases, negligible at the single output level, risk being amplified in iterated interactions, potentially leading the content to evolve towards attractor states. In a series of telephone game experiments, we apply a transmission chain design borrowed from the human cultural evolution literature: LLM agents iteratively receive, produce, and transmit texts from the previous to the next agent in the chain. By tracking the evolution of text toxicity, positivity, difficulty, and length across transmission chains, we uncover the existence of biases and attractors, and study their dependence on the initial text, the instructions, language model, and model size. For instance, we find that more open-ended instructions lead to stronger attraction effects compared to more constrained tasks. We also find that different text properties display different sensitivity to attraction effects, with toxicity leading to stronger attractors than length. These findings highlight the importance of accounting for multi-step transmission dynamics and represent a first step towards a more comprehensive understanding of LLM cultural dynamics.
In the Emotion Recognition in Conversation task, recent investigations have utilized attention mechanisms exploring relationships among utterances from intra- and inter-speakers for modeling emotional interaction between them. However, attributes such as speaker personality traits remain unexplored and present challenges in terms of their applicability to other tasks or compatibility with diverse model architectures. Therefore, this work introduces a novel framework named BiosERC, which investigates speaker characteristics in a conversation. By employing Large Language Models (LLMs), we extract the "biographical information" of the speaker within a conversation as supplementary knowledge injected into the model to classify emotional labels for each utterance. Our proposed method achieved state-of-the-art (SOTA) results on three famous benchmark datasets: IEMOCAP, MELD, and EmoryNLP, demonstrating the effectiveness and generalization of our model and showcasing its potential for adaptation to various conversation analysis tasks. Our source code is available at //github.com/yingjie7/BiosERC.