The technologies of heterogeneous multi-core architectures, co-location, and virtualization can be used to reduce server power consumption and improve system utilization, which are three important technologies for data centers. This article explores the scheduling strategy of Emulator threads within virtual machine processes in a scenario of co-location of multiple virtual machines on heterogeneous multi-core architectures. In this co-location scenario, the scheduling strategy for Emulator threads significantly affects the performance of virtual machines. This article focuses on this thread for the first time in the relevant field. This article found that the scheduling latency metric can well indicate the running status of the vCPU threads and Emulator threads in the virtualization environment, and applied this metric to the design of the scheduling strategy. This article designed an Emulator thread scheduler based on heuristic rules, which, in coordination with the host operating system's scheduler, dynamically adjusts the scheduling scope of Emulator threads to improve the overall performance of virtual machines. The article found that in real application scenarios, the scheduler effectively improved the performance of applications within virtual machines, with a maximum performance improvement of 40.7%.
Network virtualization, software-defined infrastructure, and orchestration are pivotal elements in contemporary networks, yielding new vectors for optimization and novel capabilities. In line with these principles, O-RAN presents an avenue to bypass vendor lock-in, circumvent vertical configurations, enable network programmability, and facilitate integrated Artificial Intelligence (AI) support. Moreover, modern container orchestration frameworks (e.g., Kubernetes, Red Hat OpenShift) simplify the way cellular base stations, as well as the newly introduced RAN Intelligent Controllers (RICs), are deployed, managed, and orchestrated. While this enables cost reduction via infrastructure sharing, it also makes it more challenging to meet O-RAN control latency requirements, especially during peak resource utilization. To address this problem, we propose ScalO-RAN, a control framework rooted in optimization and designed as an O-RAN rApp that allocates and scales AI-based O-RAN applications (xApps, rApps, dApps) to: (i) abide by application-specific latency requirements, and (ii) monetize the shared infrastructure while reducing energy consumption. We prototype ScalO-RAN on an OpenShift cluster with base stations, RIC, and a set of AI-based xApps deployed as micro-services. We evaluate ScalO-RAN both numerically and experimentally. Our results show that ScalO-RAN can optimally allocate and distribute O-RAN applications within available computing nodes to accommodate even stringent latency requirements. More importantly, we show that scaling O-RAN applications is primarily a time-constrained problem rather than a resource-constrained one, where scaling policies must account for stringent inference time of AI applications, and not only how many resources they consume.
Entity alignment seeks identical entities in different knowledge graphs, which is a long-standing task in the database research. Recent work leverages deep learning to embed entities in vector space and align them via nearest neighbor search. Although embedding-based entity alignment has gained marked success in recent years, it lacks explanations for alignment decisions. In this paper, we present the first framework that can generate explanations for understanding and repairing embedding-based entity alignment results. Given an entity alignment pair produced by an embedding model, we first compare its neighbor entities and relations to build a matching subgraph as a local explanation. We then construct an alignment dependency graph to understand the pair from an abstract perspective. Finally, we repair the pair by resolving three types of alignment conflicts based on dependency graphs. Experiments on five datasets demonstrate the effectiveness and generalization of our framework in explaining and repairing embedding-based entity alignment results.
Recent work has shown that energy-based language modeling is an effective framework for controllable text generation because it enables flexible integration of arbitrary discriminators. However, because energy-based LMs are globally normalized, approximate techniques like Metropolis-Hastings (MH) are required for inference. Past work has largely explored simple proposal distributions that modify a single token at a time, like in Gibbs sampling. In this paper, we develop a novel MH sampler that, in contrast, proposes re-writes of the entire sequence in each step via iterative prompting of a large language model. Our new sampler (a) allows for more efficient and accurate sampling from a target distribution and (b) allows generation length to be determined through the sampling procedure rather than fixed in advance, as past work has required. We perform experiments on two controlled generation tasks, showing both downstream performance gains and more accurate target distribution sampling in comparison with single-token proposal techniques.
We numerically demonstrate a silicon add-drop microring-based reservoir computing scheme that combines parallel delayed inputs and wavelength division multiplexing. The scheme solves memory-demanding tasks like time-series prediction with good performance without requiring external optical feedback.
Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.
The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
The task of detecting 3D objects in point cloud has a pivotal role in many real-world applications. However, 3D object detection performance is behind that of 2D object detection due to the lack of powerful 3D feature extraction methods. In order to address this issue, we propose to build a 3D backbone network to learn rich 3D feature maps by using sparse 3D CNN operations for 3D object detection in point cloud. The 3D backbone network can inherently learn 3D features from almost raw data without compressing point cloud into multiple 2D images and generate rich feature maps for object detection. The sparse 3D CNN takes full advantages of the sparsity in the 3D point cloud to accelerate computation and save memory, which makes the 3D backbone network achievable. Empirical experiments are conducted on the KITTI benchmark and results show that the proposed method can achieve state-of-the-art performance for 3D object detection.