亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Addressing multiagent decision problems in AI, especially those involving collaborative or competitive agents acting concurrently in a partially observable and stochastic environment, remains a formidable challenge. While Interactive Dynamic Influence Diagrams~(I-DIDs) have offered a promising decision framework for such problems, they encounter limitations when the subject agent encounters unknown behaviors exhibited by other agents that are not explicitly modeled within the I-DID. This can lead to sub-optimal responses from the subject agent. In this paper, we propose a novel data-driven approach that utilizes an encoder-decoder architecture, particularly a variational autoencoder, to enhance I-DID solutions. By integrating a perplexity-based tree loss function into the optimization algorithm of the variational autoencoder, coupled with the advantages of Zig-Zag One-Hot encoding and decoding, we generate potential behaviors of other agents within the I-DID that are more likely to contain their true behaviors, even from limited interactions. This new approach enables the subject agent to respond more appropriately to unknown behaviors, thus improving its decision quality. We empirically demonstrate the effectiveness of the proposed approach in two well-established problem domains, highlighting its potential for handling multi-agent decision problems with unknown behaviors. This work is the first time of using neural networks based approaches to deal with the I-DID challenge in agent planning and learning problems.

相關內容

Learning the intents of an agent, defined by its goals or motion style, is often extremely challenging from just a few examples. We refer to this problem as task concept learning and present our approach, Few-Shot Task Learning through Inverse Generative Modeling (FTL-IGM), which learns new task concepts by leveraging invertible neural generative models. The core idea is to pretrain a generative model on a set of basic concepts and their demonstrations. Then, given a few demonstrations of a new concept (such as a new goal or a new action), our method learns the underlying concepts through backpropagation without updating the model weights, thanks to the invertibility of the generative model. We evaluate our method in five domains -- object rearrangement, goal-oriented navigation, motion caption of human actions, autonomous driving, and real-world table-top manipulation. Our experimental results demonstrate that via the pretrained generative model, we successfully learn novel concepts and generate agent plans or motion corresponding to these concepts in (1) unseen environments and (2) in composition with training concepts.

Humanoid activities involving sequential contacts are crucial for complex robotic interactions and operations in the real world and are traditionally solved by model-based motion planning, which is time-consuming and often relies on simplified dynamics models. Although model-free reinforcement learning (RL) has become a powerful tool for versatile and robust whole-body humanoid control, it still requires tedious task-specific tuning and state machine design and suffers from long-horizon exploration issues in tasks involving contact sequences. In this work, we propose WoCoCo (Whole-Body Control with Sequential Contacts), a unified framework to learn whole-body humanoid control with sequential contacts by naturally decomposing the tasks into separate contact stages. Such decomposition facilitates simple and general policy learning pipelines through task-agnostic reward and sim-to-real designs, requiring only one or two task-related terms to be specified for each task. We demonstrated that end-to-end RL-based controllers trained with WoCoCo enable four challenging whole-body humanoid tasks involving diverse contact sequences in the real world without any motion priors: 1) versatile parkour jumping, 2) box loco-manipulation, 3) dynamic clap-and-tap dancing, and 4) cliffside climbing. We further show that WoCoCo is a general framework beyond humanoid by applying it in 22-DoF dinosaur robot loco-manipulation tasks.

We consider the obnoxious facility location problem (in which agents prefer the facility location to be far from them) and propose a hierarchy of distance-based proportional fairness concepts for the problem. These fairness axioms ensure that groups of agents at the same location are guaranteed to be a distance from the facility proportional to their group size. We consider deterministic and randomized mechanisms, and compute tight bounds on the price of proportional fairness. In the deterministic setting, we show that our proportional fairness axioms are incompatible with strategyproofness, and prove asymptotically tight $\epsilon$-price of anarchy and stability bounds for proportionally fair welfare-optimal mechanisms. In the randomized setting, we identify proportionally fair and strategyproof mechanisms that give an expected welfare within a constant factor of the optimal welfare. Finally, we prove existence results for two extensions to our model.

Depth estimation under adverse conditions remains a significant challenge. Recently, multi-spectral depth estimation, which integrates both visible light and thermal images, has shown promise in addressing this issue. However, existing algorithms struggle with precise pixel-level feature matching, limiting their ability to fully exploit geometric constraints across different spectra. To address this, we propose a novel framework incorporating stereo depth estimation to enforce accurate geometric constraints. In particular, we treat the visible light and thermal images as a stereo pair and utilize a Cross-modal Feature Matching (CFM) Module to construct a cost volume for pixel-level matching. To mitigate the effects of poor lighting on stereo matching, we introduce Degradation Masking, which leverages robust monocular thermal depth estimation in degraded regions. Our method achieves state-of-the-art (SOTA) performance on the Multi-Spectral Stereo (MS2) dataset, with qualitative evaluations demonstrating high-quality depth maps under varying lighting conditions.

Content moderation on a global scale must navigate a complex array of local cultural distinctions, which can hinder effective enforcement. While global policies aim for consistency and broad applicability, they often miss the subtleties of regional language interpretation, cultural beliefs, and local legislation. This work introduces a flexible framework that enhances foundation language models with cultural knowledge. Our approach involves fine-tuning encoder-decoder models on media-diet data to capture cultural nuances, and applies a continued training regime to effectively integrate these models into a content moderation pipeline. We evaluate this framework in a case study of an online podcast platform with content spanning various regions. The results show that our culturally adapted models improve the accuracy of local violation detection and offer explanations that align more closely with regional cultural norms. Our findings reinforce the need for an adaptable content moderation approach that remains flexible in response to the diverse cultural landscapes it operates in and represents a step towards a more equitable and culturally sensitive framework for content moderation, demonstrating what is achievable in this domain.

As a prominent challenge in addressing real-world issues within a dynamic environment, label shift, which refers to the learning setting where the source (training) and target (testing) label distributions do not match, has recently received increasing attention. Existing label shift methods solely use unlabeled target samples to estimate the target label distribution, and do not involve them during the classifier training, resulting in suboptimal utilization of available information. One common solution is to directly blend the source and target distributions during the training of the target classifier. However, we illustrate the theoretical deviation and limitations of the direct distribution mixture in the label shift setting. To tackle this crucial yet unexplored issue, we introduce the concept of aligned distribution mixture, showcasing its theoretical optimality and generalization error bounds. By incorporating insights from generalization theory, we propose an innovative label shift framework named as Aligned Distribution Mixture (ADM). Within this framework, we enhance four typical label shift methods by introducing modifications to the classifier training process. Furthermore, we also propose a one-step approach that incorporates a pioneering coupling weight estimation strategy. Considering the distinctiveness of the proposed one-step approach, we develop an efficient bi-level optimization strategy. Experimental results demonstrate the effectiveness of our approaches, together with their effectiveness in COVID-19 diagnosis applications.

Doubly robust estimators have gained popularity in the field of causal inference due to their ability to provide consistent point estimates when either an outcome or exposure model is correctly specified. However, for nonrandomized exposures the influence function based variance estimator frequently used with doubly robust estimators of the average causal effect is only consistent when both working models (i.e., outcome and exposure models) are correctly specified. Here, the empirical sandwich variance estimator and the nonparametric bootstrap are demonstrated to be doubly robust variance estimators. That is, they are expected to provide valid estimates of the variance leading to nominal confidence interval coverage when only one working model is correctly specified. Simulation studies illustrate the properties of the influence function based, empirical sandwich, and nonparametric bootstrap variance estimators in the setting where parametric working models are assumed. Estimators are applied to data from the Improving Pregnancy Outcomes with Progesterone (IPOP) study to estimate the effect of maternal anemia on birth weight among women with HIV.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司