亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Today, the most widespread, widely applicable technology for gathering data relies on experienced scientists armed with handheld radio telemetry equipment to locate low-power radio transmitters attached to wildlife from the ground. Although aerial robots can transform labor-intensive conservation tasks, the realization of autonomous systems for tackling task complexities under real-world conditions remains a challenge. We developed ConservationBots-small aerial robots for tracking multiple, dynamic, radio-tagged wildlife. The aerial robot achieves robust localization performance and fast task completion times -- significant for energy-limited aerial systems while avoiding close encounters with potential, counter-productive disturbances to wildlife. Our approach overcomes the technical and practical problems posed by combining a lightweight sensor with new concepts: i) planning to determine both trajectory and measurement actions guided by an information-theoretic objective, which allows the robot to strategically select near-instantaneous range-only measurements to achieve faster localization, and time-consuming sensor rotation actions to acquire bearing measurements and achieve robust tracking performance; ii) a bearing detector more robust to noise and iii) a tracking algorithm formulation robust to missed and false detections experienced in real-world conditions. We conducted extensive studies: simulations built upon complex signal propagation over high-resolution elevation data on diverse geographical terrains; field testing; studies with wombats (Lasiorhinus latifrons; nocturnal, vulnerable species dwelling in underground warrens) and tracking comparisons with a highly experienced biologist to validate the effectiveness of our aerial robot and demonstrate the significant advantages over the manual method.

相關內容

The widespread adoption of Federated Learning (FL), a privacy-preserving distributed learning methodology, has been impeded by the challenge of high communication overheads, typically arising from the transmission of large-scale models. Existing adaptive quantization methods, designed to mitigate these overheads, operate under the impractical assumption of uniform device participation in every training round. Additionally, these methods are limited in their adaptability due to the necessity of manual quantization level selection and often overlook biases inherent in local devices' data, thereby affecting the robustness of the global model. In response, this paper introduces AQUILA (adaptive quantization in device selection strategy), a novel adaptive framework devised to effectively handle these issues, enhancing the efficiency and robustness of FL. AQUILA integrates a sophisticated device selection method that prioritizes the quality and usefulness of device updates. Utilizing the exact global model stored by devices, it enables a more precise device selection criterion, reduces model deviation, and limits the need for hyperparameter adjustments. Furthermore, AQUILA presents an innovative quantization criterion, optimized to improve communication efficiency while assuring model convergence. Our experiments demonstrate that AQUILA significantly decreases communication costs compared to existing methods, while maintaining comparable model performance across diverse non-homogeneous FL settings, such as Non-IID data and heterogeneous model architectures.

Recently, there has been growing interest in extending the context length of large language models (LLMs), aiming to effectively process long inputs of one turn or conversations with more extensive histories. While proprietary models such as GPT-4 and Claude can largely preserve the reasoning ability in an extended context, open-source models are still progressing through the early stages of development. To bridge this gap, we propose L-Eval to institute a more standardized evaluation for long context language models (LCLMs) addressing two key aspects: dataset construction and evaluation metrics. On the one hand, we build a new evaluation suite containing 20 sub-tasks, 508 long documents, and over 2,000 human-labeled query-response pairs encompassing diverse question styles, domains, and input length (3k$\sim$200k tokens). On the other hand, we investigate the effectiveness in evalution metrics for LCLMs. Results show that popular n-gram matching metrics generally can not correlate well with human judgment, and thus we strongly advocate for length-instruction-enhanced (LIE) evaluation and employing LLM judges. We conducted a comprehensive study of 4 popular commercial LLMs and 12 open-source counterparts using the L-Eval benchmark. Our empirical findings offer useful insights into the study of LCLMs and lay the groundwork for the development of more principled evaluation of these models.

Information visualization and natural language are intricately linked. However, the majority of research and relevant work in information and data visualization (and human-computer interaction) involve English-speaking populations as both researchers and participants, are published in English, and are presented predominantly at English-speaking venues. Although several solutions can be proposed such as translating English texts in visualization to other languages, there is little research that looks at the intersection of data visualization and different languages, and the implications that current visualization practices have on non-English speaking communities. In this position paper, we argue that linguistically diverse communities abound beyond the English-speaking world and offer a richness of experiences for the visualization research community to engage with. Through a case study of how two non-English languages interplay with data visualization reasoning in Madagascar, we describe how monolingualism in data visualization impacts the experiences of underrepresented populations and emphasize potential harm to these communities. Lastly, we raise several questions towards advocating for more inclusive visualization practices that center the diverse experiences of linguistically underrepresented populations.

Modern cyber attackers use advanced zero-day exploits, highly targeted spear phishing, and other social engineering techniques to gain access and also use evasion techniques to maintain a prolonged presence within the victim network while working gradually towards the objective. To minimize the damage, it is necessary to detect these Advanced Persistent Threats as early in the campaign as possible. This paper proposes, Prov2Vec, a system for the continuous monitoring of enterprise host's behavior to detect attackers' activities. It leverages the data provenance graph built using system event logs to get complete visibility into the execution state of an enterprise host and the causal relationship between system entities. It proposes a novel provenance graph kernel to obtain the canonical representation of the system behavior, which is compared against its historical behaviors and that of other hosts to detect the deviation from the normality. These representations are used in several machine learning models to evaluate their ability to capture the underlying behavior of an endpoint host. We have empirically demonstrated that the provenance graph kernel produces a much more compact representation compared to existing methods while improving prediction ability.

Botnet detection based on machine learning have witnessed significant leaps in recent years, with the availability of large and reliable datasets that are extracted from real-life scenarios. Consequently, adversarial attacks on machine learning-based cybersecurity systems are posing a significant threat to the practicality of these solutions. In this paper, we introduce a novel attack that utilizes machine learning model's explainability in evading detection by botnet detection systems. The proposed attack utilizes information obtained from model's explainability to build adversarial samples that can evade detection in a blackbox setting. The proposed attack was tested on a trained IoT botnet detection systems and was capable of bypassing the botnet detection with 0% detection by altering one feature only to generate the adversarial samples.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

Normalization is known to help the optimization of deep neural networks. Curiously, different architectures require specialized normalization methods. In this paper, we study what normalization is effective for Graph Neural Networks (GNNs). First, we adapt and evaluate the existing methods from other domains to GNNs. Faster convergence is achieved with InstanceNorm compared to BatchNorm and LayerNorm. We provide an explanation by showing that InstanceNorm serves as a preconditioner for GNNs, but such preconditioning effect is weaker with BatchNorm due to the heavy batch noise in graph datasets. Second, we show that the shift operation in InstanceNorm results in an expressiveness degradation of GNNs for highly regular graphs. We address this issue by proposing GraphNorm with a learnable shift. Empirically, GNNs with GraphNorm converge faster compared to GNNs using other normalization. GraphNorm also improves the generalization of GNNs, achieving better performance on graph classification benchmarks.

With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司