亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a novel method for fine-grained high-quality image segmentation of both objects and scenes. Inspired by dilation and erosion from morphological image processing techniques, we treat the pixel level segmentation problems as squeezing object boundary. From this perspective, we propose \textbf{Boundary Squeeze} module: a novel and efficient module that squeezes the object boundary from both inner and outer directions which leads to precise mask representation. To generate such squeezed representation, we propose a new bidirectionally flow-based warping process and design specific loss signals to supervise the learning process. Boundary Squeeze Module can be easily applied to both instance and semantic segmentation tasks as a plug-and-play module by building on top of existing models. We show that our simple yet effective design can lead to high qualitative results on several different datasets and we also provide several different metrics on boundary to prove the effectiveness over previous work. Moreover, the proposed module is light-weighted and thus has potential for practical usage. Our method yields large gains on COCO, Cityscapes, for both instance and semantic segmentation and outperforms previous state-of-the-art PointRend in both accuracy and speed under the same setting. Code and model will be available.

相關內容

圖(tu)像(xiang)(xiang)分(fen)(fen)割就是(shi)(shi)把圖(tu)像(xiang)(xiang)分(fen)(fen)成若(ruo)干個(ge)特(te)定的(de)(de)、具有獨特(te)性(xing)(xing)質的(de)(de)區域(yu)并提出感(gan)興趣目標(biao)的(de)(de)技(ji)術和(he)過(guo)程。它是(shi)(shi)由圖(tu)像(xiang)(xiang)處(chu)理到圖(tu)像(xiang)(xiang)分(fen)(fen)析(xi)的(de)(de)關鍵步驟。 所謂圖(tu)像(xiang)(xiang)分(fen)(fen)割指的(de)(de)是(shi)(shi)根(gen)據(ju)灰度、顏(yan)色(se)、紋理和(he)形狀等特(te)征把圖(tu)像(xiang)(xiang)劃(hua)分(fen)(fen)成若(ruo)干互不(bu)(bu)交迭(die)的(de)(de)區域(yu),并使(shi)這些特(te)征在同一區域(yu)內呈現(xian)出相似性(xing)(xing),而在不(bu)(bu)同區域(yu)間呈現(xian)出明顯的(de)(de)差異性(xing)(xing)。

知識薈萃

精品入門和進階(jie)教程、論文(wen)和代碼整理等

更多

查(cha)看相關VIP內容、論文、資訊(xun)等

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

Recently, numerous handcrafted and searched networks have been applied for semantic segmentation. However, previous works intend to handle inputs with various scales in pre-defined static architectures, such as FCN, U-Net, and DeepLab series. This paper studies a conceptually new method to alleviate the scale variance in semantic representation, named dynamic routing. The proposed framework generates data-dependent routes, adapting to the scale distribution of each image. To this end, a differentiable gating function, called soft conditional gate, is proposed to select scale transform paths on the fly. In addition, the computational cost can be further reduced in an end-to-end manner by giving budget constraints to the gating function. We further relax the network level routing space to support multi-path propagations and skip-connections in each forward, bringing substantial network capacity. To demonstrate the superiority of the dynamic property, we compare with several static architectures, which can be modeled as special cases in the routing space. Extensive experiments are conducted on Cityscapes and PASCAL VOC 2012 to illustrate the effectiveness of the dynamic framework. Code is available at //github.com/yanwei-li/DynamicRouting.

We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.

Medical image segmentation is a primary task in many applications, and the accuracy of the segmentation is a necessity. Recently, many deep learning networks derived from U-Net have been extensively used and have achieved notable results. To further improve and refine the performance of U-Net, parallel decoders along with mask prediction decoder have been carried out and have shown significant improvement with additional advantages. In our work, we utilize the advantages of using a combination of contour and distance map as regularizers. In turn, we propose a novel architecture Psi-Net with a single encoder and three parallel decoders, one decoder to learn the mask and other two to learn the auxiliary tasks of contour detection and distance map estimation. The learning of these auxiliary tasks helps in capturing the shape and boundary. We also propose a new joint loss function for the proposed architecture. The loss function consists of a weighted combination of Negative likelihood and Mean Square Error loss. We have used two publicly available datasets: 1) Origa dataset for the task of optic cup and disc segmentation and 2) Endovis segment dataset for the task of polyp segmentation to evaluate our model. We have conducted extensive experiments using our network to show our model gives better results in terms of segmentation, boundary and shape metrics.

Deep neural network models used for medical image segmentation are large because they are trained with high-resolution three-dimensional (3D) images. Graphics processing units (GPUs) are widely used to accelerate the trainings. However, the memory on a GPU is not large enough to train the models. A popular approach to tackling this problem is patch-based method, which divides a large image into small patches and trains the models with these small patches. However, this method would degrade the segmentation quality if a target object spans multiple patches. In this paper, we propose a novel approach for 3D medical image segmentation that utilizes the data-swapping, which swaps out intermediate data from GPU memory to CPU memory to enlarge the effective GPU memory size, for training high-resolution 3D medical images without patching. We carefully tuned parameters in the data-swapping method to obtain the best training performance for 3D U-Net, a widely used deep neural network model for medical image segmentation. We applied our tuning to train 3D U-Net with full-size images of 192 x 192 x 192 voxels in brain tumor dataset. As a result, communication overhead, which is the most important issue, was reduced by 17.1%. Compared with the patch-based method for patches of 128 x 128 x 128 voxels, our training for full-size images achieved improvement on the mean Dice score by 4.48% and 5.32 % for detecting whole tumor sub-region and tumor core sub-region, respectively. The total training time was reduced from 164 hours to 47 hours, resulting in 3.53 times of acceleration.

In this work, we evaluate the use of superpixel pooling layers in deep network architectures for semantic segmentation. Superpixel pooling is a flexible and efficient replacement for other pooling strategies that incorporates spatial prior information. We propose a simple and efficient GPU-implementation of the layer and explore several designs for the integration of the layer into existing network architectures. We provide experimental results on the IBSR and Cityscapes dataset, demonstrating that superpixel pooling can be leveraged to consistently increase network accuracy with minimal computational overhead. Source code is available at //github.com/bermanmaxim/superpixPool

One of the time-consuming routine work for a radiologist is to discern anatomical structures from tomographic images. For assisting radiologists, this paper develops an automatic segmentation method for pelvic magnetic resonance (MR) images. The task has three major challenges 1) A pelvic organ can have various sizes and shapes depending on the axial image, which requires local contexts to segment correctly. 2) Different organs often have quite similar appearance in MR images, which requires global context to segment. 3) The number of available annotated images are very small to use the latest segmentation algorithms. To address the challenges, we propose a novel convolutional neural network called Attention-Pyramid network (APNet) that effectively exploits both local and global contexts, in addition to a data-augmentation technique that is particularly effective for MR images. In order to evaluate our method, we construct fine-grained (50 pelvic organs) MR image segmentation dataset, and experimentally confirm the superior performance of our techniques over the state-of-the-art image segmentation methods.

We propose a novel locally adaptive learning estimator for enhancing the inter- and intra- discriminative capabilities of Deep Neural Networks, which can be used as improved loss layer for semantic image segmentation tasks. Most loss layers compute pixel-wise cost between feature maps and ground truths, ignoring spatial layouts and interactions between neighboring pixels with same object category, and thus networks cannot be effectively sensitive to intra-class connections. Stride by stride, our method firstly conducts adaptive pooling filter operating over predicted feature maps, aiming to merge predicted distributions over a small group of neighboring pixels with same category, and then it computes cost between the merged distribution vector and their category label. Such design can make groups of neighboring predictions from same category involved into estimations on predicting correctness with respect to their category, and hence train networks to be more sensitive to regional connections between adjacent pixels based on their categories. In the experiments on Pascal VOC 2012 segmentation datasets, the consistently improved results show that our proposed approach achieves better segmentation masks against previous counterparts.

This work presents a region-growing image segmentation approach based on superpixel decomposition. From an initial contour-constrained over-segmentation of the input image, the image segmentation is achieved by iteratively merging similar superpixels into regions. This approach raises two key issues: (1) how to compute the similarity between superpixels in order to perform accurate merging and (2) in which order those superpixels must be merged together. In this perspective, we firstly introduce a robust adaptive multi-scale superpixel similarity in which region comparisons are made both at content and common border level. Secondly, we propose a global merging strategy to efficiently guide the region merging process. Such strategy uses an adpative merging criterion to ensure that best region aggregations are given highest priorities. This allows to reach a final segmentation into consistent regions with strong boundary adherence. We perform experiments on the BSDS500 image dataset to highlight to which extent our method compares favorably against other well-known image segmentation algorithms. The obtained results demonstrate the promising potential of the proposed approach.

Spatial pyramid pooling module or encode-decoder structure are used in deep neural networks for semantic segmentation task. The former networks are able to encode multi-scale contextual information by probing the incoming features with filters or pooling operations at multiple rates and multiple effective fields-of-view, while the latter networks can capture sharper object boundaries by gradually recovering the spatial information. In this work, we propose to combine the advantages from both methods. Specifically, our proposed model, DeepLabv3+, extends DeepLabv3 by adding a simple yet effective decoder module to refine the segmentation results especially along object boundaries. We further explore the Xception model and apply the depthwise separable convolution to both Atrous Spatial Pyramid Pooling and decoder modules, resulting in a faster and stronger encoder-decoder network. We demonstrate the effectiveness of the proposed model on the PASCAL VOC 2012 semantic image segmentation dataset and achieve a performance of 89% on the test set without any post-processing. Our paper is accompanied with a publicly available reference implementation of the proposed models in Tensorflow.

北京阿比特科技有限公司