Mobile video applications today have attracted significant attention. Deep learning model (e.g. deep neural network, DNN) compression is widely used to enable on-device inference for facilitating robust and private mobile video applications. The compressed DNN, however, is vulnerable to the agnostic data drift of the live video captured from the dynamically changing mobile scenarios. To combat the data drift, mobile ends rely on edge servers to continuously evolve and re-compress the DNN with freshly collected data. We design a framework, AdaEvo, that efficiently supports the resource-limited edge server handling mobile DNN evolution tasks from multiple mobile ends. The key goal of AdaEvo is to maximize the average quality of experience (QoE), e.g. the proportion of high-quality DNN service time to the entire life cycle, for all mobile ends. Specifically, it estimates the DNN accuracy drops at the mobile end without labels and performs a dedicated video frame sampling strategy to control the size of retraining data. In addition, it balances the limited computing and memory resources on the edge server and the competition between asynchronous tasks initiated by different mobile users. With an extensive evaluation of real-world videos from mobile scenarios and across four diverse mobile tasks, experimental results show that AdaEvo enables up to 34% accuracy improvement and 32% average QoE improvement.
We propose VQ-NeRF, a two-branch neural network model that incorporates Vector Quantization (VQ) to decompose and edit reflectance fields in 3D scenes. Conventional neural reflectance fields use only continuous representations to model 3D scenes, despite the fact that objects are typically composed of discrete materials in reality. This lack of discretization can result in noisy material decomposition and complicated material editing. To address these limitations, our model consists of a continuous branch and a discrete branch. The continuous branch follows the conventional pipeline to predict decomposed materials, while the discrete branch uses the VQ mechanism to quantize continuous materials into individual ones. By discretizing the materials, our model can reduce noise in the decomposition process and generate a segmentation map of discrete materials. Specific materials can be easily selected for further editing by clicking on the corresponding area of the segmentation outcomes. Additionally, we propose a dropout-based VQ codeword ranking strategy to predict the number of materials in a scene, which reduces redundancy in the material segmentation process. To improve usability, we also develop an interactive interface to further assist material editing. We evaluate our model on both computer-generated and real-world scenes, demonstrating its superior performance. To the best of our knowledge, our model is the first to enable discrete material editing in 3D scenes.
Federated learning (FL) facilitates distributed training across different IoT and edge devices, safeguarding the privacy of their data. The inherent distributed structure of FL introduces vulnerabilities, especially from adversarial devices aiming to skew local updates to their advantage. Despite the plethora of research focusing on Byzantine-resilient FL, the academic community has yet to establish a comprehensive benchmark suite, pivotal for impartial assessment and comparison of different techniques. This paper presents Blades, a scalable, extensible, and easily configurable benchmark suite that supports researchers and developers in efficiently implementing and validating novel strategies against baseline algorithms in Byzantine-resilient FL. Blades contains built-in implementations of representative attack and defense strategies and offers a user-friendly interface that seamlessly integrates new ideas. Using Blades, we re-evaluate representative attacks and defenses on wide-ranging experimental configurations (approximately 1,500 trials in total). Through our extensive experiments, we gained new insights into FL robustness and highlighted previously overlooked limitations due to the absence of thorough evaluations and comparisons of baselines under various attack settings.
Federated learning (FL) is increasingly deployed among multiple clients to train a shared model over decentralized data. To address privacy concerns, FL systems need to safeguard the clients' data from disclosure during training and control data leakage through trained models when exposed to untrusted domains. Distributed differential privacy (DP) offers an appealing solution in this regard as it achieves a balanced tradeoff between privacy and utility without a trusted server. However, existing distributed DP mechanisms are impractical in the presence of client dropout, resulting in poor privacy guarantees or degraded training accuracy. In addition, these mechanisms suffer from severe efficiency issues. We present Dordis, a distributed differentially private FL framework that is highly efficient and resilient to client dropout. Specifically, we develop a novel `add-then-remove' scheme that enforces a required noise level precisely in each training round, even if some sampled clients drop out. This ensures that the privacy budget is utilized prudently, despite unpredictable client dynamics. To boost performance, Dordis operates as a distributed parallel architecture via encapsulating the communication and computation operations into stages. It automatically divides the global model aggregation into several chunk-aggregation tasks and pipelines them for optimal speedup. Large-scale deployment evaluations demonstrate that Dordis efficiently handles client dropout in various realistic FL scenarios, achieving the optimal privacy-utility tradeoff and accelerating training by up to 2.4$\times$ compared to existing solutions.
Learning feature interaction is the critical backbone to building recommender systems. In web-scale applications, learning feature interaction is extremely challenging due to the sparse and large input feature space; meanwhile, manually crafting effective feature interactions is infeasible because of the exponential solution space. We propose to leverage a Transformer-based architecture with attention layers to automatically capture feature interactions. Transformer architectures have witnessed great success in many domains, such as natural language processing and computer vision. However, there has not been much adoption of Transformer architecture for feature interaction modeling in industry. We aim at closing the gap. We identify two key challenges for applying the vanilla Transformer architecture to web-scale recommender systems: (1) Transformer architecture fails to capture the heterogeneous feature interactions in the self-attention layer; (2) The serving latency of Transformer architecture might be too high to be deployed in web-scale recommender systems. We first propose a heterogeneous self-attention layer, which is a simple yet effective modification to the self-attention layer in Transformer, to take into account the heterogeneity of feature interactions. We then introduce \textsc{Hiformer} (\textbf{H}eterogeneous \textbf{I}nteraction Trans\textbf{former}) to further improve the model expressiveness. With low-rank approximation and model pruning, \hiformer enjoys fast inference for online deployment. Extensive offline experiment results corroborates the effectiveness and efficiency of the \textsc{Hiformer} model. We have successfully deployed the \textsc{Hiformer} model to a real world large scale App ranking model at Google Play, with significant improvement in key engagement metrics (up to +2.66\%).
Emerging deep learning workloads urgently need fast general matrix multiplication (GEMM). To meet such demand, one of the critical features of machine-learning-specific accelerators such as NVIDIA Tensor Cores, AMD Matrix Cores, and Google TPUs is the support of mixed-precision enabled GEMM. For DNN models, lower-precision FP data formats and computation offer acceptable correctness but significant performance, area, and memory footprint improvement. While promising, the mixed-precision computation on error resilience remains unexplored. To this end, we develop a fault injection framework that systematically injects fault into the mixed-precision computation results. We investigate how the faults affect the accuracy of machine learning applications. Based on the error resilience characteristics, we offer lightweight error detection and correction solutions that significantly improve the overall model accuracy if the models experience hardware faults. The solutions can be efficiently integrated into the accelerator's pipelines.
Pre-trained vision-language models (VLMs) have achieved promising success in many fields, especially with prompt learning paradigm. In this work, we propose GIP-COL (Graph-Injected Soft Prompting for COmpositional Learning) to better explore the compositional zero-shot learning (CZSL) ability of VLMs within the prompt-based learning framework. The soft prompt in GIPCOL is structured and consists of the prefix learnable vectors, attribute label and object label. In addition, the attribute and object labels in the soft prompt are designated as nodes in a compositional graph. The compositional graph is constructed based on the compositional structure of the objects and attributes extracted from the training data and consequently feeds the updated concept representation into the soft prompt to capture this compositional structure for a better prompting for CZSL. With the new prompting strategy, GIPCOL achieves state-of-the-art AUC results on all three CZSL benchmarks, including MIT-States, UT-Zappos, and C-GQA datasets in both closed and open settings compared to previous non-CLIP as well as CLIP-based methods. We analyze when and why GIPCOL operates well given the CLIP backbone and its training data limitations, and our findings shed light on designing more effective prompts for CZSL
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.
Conventionally, spatiotemporal modeling network and its complexity are the two most concentrated research topics in video action recognition. Existing state-of-the-art methods have achieved excellent accuracy regardless of the complexity meanwhile efficient spatiotemporal modeling solutions are slightly inferior in performance. In this paper, we attempt to acquire both efficiency and effectiveness simultaneously. First of all, besides traditionally treating H x W x T video frames as space-time signal (viewing from the Height-Width spatial plane), we propose to also model video from the other two Height-Time and Width-Time planes, to capture the dynamics of video thoroughly. Secondly, our model is designed based on 2D CNN backbones and model complexity is well kept in mind by design. Specifically, we introduce a novel multi-view fusion (MVF) module to exploit video dynamics using separable convolution for efficiency. It is a plug-and-play module and can be inserted into off-the-shelf 2D CNNs to form a simple yet effective model called MVFNet. Moreover, MVFNet can be thought of as a generalized video modeling framework and it can specialize to be existing methods such as C2D, SlowOnly, and TSM under different settings. Extensive experiments are conducted on popular benchmarks (i.e., Something-Something V1 & V2, Kinetics, UCF-101, and HMDB-51) to show its superiority. The proposed MVFNet can achieve state-of-the-art performance with 2D CNN's complexity.
Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy---using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71 by [16]. Our codes are publicly available at //github.com/google-research/google-research/tree/master/cluster_gcn.