The process of conducting literature reviews is often time-consuming and labor-intensive. To streamline this process, I present an AI Literature Review Suite that integrates several functionalities to provide a comprehensive literature review. This tool leverages the power of open access science, large language models (LLMs) and natural language processing to enable the searching, downloading, and organizing of PDF files, as well as extracting content from articles. Semantic search queries are used for data retrieval, while text embeddings and summarization using LLMs present succinct literature reviews. Interaction with PDFs is enhanced through a user-friendly graphical user interface (GUI). The suite also features integrated programs for bibliographic organization, interaction and query, and literature review summaries. This tool presents a robust solution to automate and optimize the process of literature review in academic and industrial research.
Since the origins of the Internet, various vulnerabilities exploiting the IP fragmentation process have plagued IPv4 protocol, many leading to a wide range of attacks. IPv6 modified the handling of fragmentations and introduced a specific extension header, not solving the related problems, as proved by extensive literature. One of the primary sources of problems has been the overlapping fragments, which result in unexpected or malicious packets when reassembled. To overcome the problem related to fragmentation, the authors of RFC 5722 decided that IPv6 hosts MUST silently drop overlapping fragments. Since then, several studies have proposed methodologies to check if IPv6 hosts accept overlapping fragments and are still vulnerable to related attacks. However, some of the above methodologies have not been proven complete or need to be more accurate. In this paper we propose a novel model to check IPv6 fragmentation handling specifically suited for the reassembling strategies of modern operating systems. Previous models, indeed, considered OS reassembly policy as byte-based. However, nowadays, reassembly policies are fragment-based, making previous models inadequate. Our model leverages the commutative property of the checksum, simplifying the whole assessing process. Starting with this new model, we were able to better evaluate the RFC-5722 and RFC-9099 compliance of modern operating systems against fragmentation handling. Our results suggest that IPv6 fragmentation can still be considered a threat and that more effort is needed to solve related security issues.
High quality transcription data is crucial for training automatic speech recognition (ASR) systems. However, the existing industry-level data collection pipelines are expensive to researchers, while the quality of crowdsourced transcription is low. In this paper, we propose a reliable method to collect speech transcriptions. We introduce two mechanisms to improve transcription quality: confidence estimation based reprocessing at labeling stage, and automatic word error correction at post-labeling stage. We collect and release LibriCrowd - a large-scale crowdsourced dataset of audio transcriptions on 100 hours of English speech. Experiment shows the Transcription WER is reduced by over 50%. We further investigate the impact of transcription error on ASR model performance and found a strong correlation. The transcription quality improvement provides over 10% relative WER reduction for ASR models. We release the dataset and code to benefit the research community.
The all pairs shortest path problem (APSP) is one of the foundational problems in computer science. For weighted dense graphs on $n$ vertices, no truly sub-cubic algorithms exist to compute APSP exactly even for undirected graphs. This is popularly known as the APSP conjecture and has played a prominent role in developing the field of fine-grained complexity. The seminal result of Seidel uses fast matrix multiplication (FMM) to compute APSP on unweighted undirected graphs exactly in $\tilde{O}(n^{\omega})$ time, where $\omega=2.372$. Even for unweighted undirected graphs, it is not possible to obtain a $(2-\epsilon)$-approximation of APSP in $o(n^\omega)$ time. In this paper, we provide a multitude of new results for multiplicative and additive approximations of APSP in undirected graphs for both unweighted and weighted cases. We provide new algorithms for multiplicative 2-approximation of unweighted graphs: a deterministic one that runs in $\tilde{O}(n^{2.072})$ time and a randomized one that runs in $\tilde{O}(n^{2.032})$ on expectation improving upon the best known bound of $\tilde{O}(n^{2.25})$ by Roditty (STOC, 2023). For $2$-approximating paths of length $\geq k$, $k \geq 4$, we provide the first improvement after Dor, Halperin, Zwick (2000) for dense graphs even just using combinatorial methods, and then improve it further using FMM. We next consider additive approximations, and provide improved bounds for all additive $\beta$-approximations, $\beta \geq 4$. For weighted graphs, we show that by allowing small additive errors along with an $(1+\epsilon)$-multiplicative approximation, it is possible to improve upon Zwick's $\tilde{O}(n^\omega)$ algorithm. Our results point out the crucial role that FMM can play even on approximating APSP on unweighted undirected graphs, and reveal new bottlenecks towards achieving a quadratic running time to approximate APSP.
In experimental design, Neyman allocation refers to the practice of allocating subjects into treated and control groups, potentially in unequal numbers proportional to their respective standard deviations, with the objective of minimizing the variance of the treatment effect estimator. This widely recognized approach increases statistical power in scenarios where the treated and control groups have different standard deviations, as is often the case in social experiments, clinical trials, marketing research, and online A/B testing. However, Neyman allocation cannot be implemented unless the standard deviations are known in advance. Fortunately, the multi-stage nature of the aforementioned applications allows the use of earlier stage observations to estimate the standard deviations, which further guide allocation decisions in later stages. In this paper, we introduce a competitive analysis framework to study this multi-stage experimental design problem. We propose a simple adaptive Neyman allocation algorithm, which almost matches the information-theoretic limit of conducting experiments. Using online A/B testing data from a social media site, we demonstrate the effectiveness of our adaptive Neyman allocation algorithm, highlighting its practicality especially when applied with only a limited number of stages.
This book is the result of a seminar in which we reviewed multimodal approaches and attempted to create a solid overview of the field, starting with the current state-of-the-art approaches in the two subfields of Deep Learning individually. Further, modeling frameworks are discussed where one modality is transformed into the other, as well as models in which one modality is utilized to enhance representation learning for the other. To conclude the second part, architectures with a focus on handling both modalities simultaneously are introduced. Finally, we also cover other modalities as well as general-purpose multi-modal models, which are able to handle different tasks on different modalities within one unified architecture. One interesting application (Generative Art) eventually caps off this booklet.
The information bottleneck (IB) method is a technique for extracting information that is relevant for predicting the target random variable from the source random variable, which is typically implemented by optimizing the IB Lagrangian that balances the compression and prediction terms. However, the IB Lagrangian is hard to optimize, and multiple trials for tuning values of Lagrangian multiplier are required. Moreover, we show that the prediction performance strictly decreases as the compression gets stronger during optimizing the IB Lagrangian. In this paper, we implement the IB method from the perspective of supervised disentangling. Specifically, we introduce Disentangled Information Bottleneck (DisenIB) that is consistent on compressing source maximally without target prediction performance loss (maximum compression). Theoretical and experimental results demonstrate that our method is consistent on maximum compression, and performs well in terms of generalization, robustness to adversarial attack, out-of-distribution detection, and supervised disentangling.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Link prediction for knowledge graphs is the task of predicting missing relationships between entities. Previous work on link prediction has focused on shallow, fast models which can scale to large knowledge graphs. However, these models learn less expressive features than deep, multi-layer models -- which potentially limits performance. In this work, we introduce ConvE, a multi-layer convolutional network model for link prediction, and report state-of-the-art results for several established datasets. We also show that the model is highly parameter efficient, yielding the same performance as DistMult and R-GCN with 8x and 17x fewer parameters. Analysis of our model suggests that it is particularly effective at modelling nodes with high indegree -- which are common in highly-connected, complex knowledge graphs such as Freebase and YAGO3. In addition, it has been noted that the WN18 and FB15k datasets suffer from test set leakage, due to inverse relations from the training set being present in the test set -- however, the extent of this issue has so far not been quantified. We find this problem to be severe: a simple rule-based model can achieve state-of-the-art results on both WN18 and FB15k. To ensure that models are evaluated on datasets where simply exploiting inverse relations cannot yield competitive results, we investigate and validate several commonly used datasets -- deriving robust variants where necessary. We then perform experiments on these robust datasets for our own and several previously proposed models, and find that ConvE achieves state-of-the-art Mean Reciprocal Rank across all datasets.
This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.