亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As digital healthcare evolves, the security of electronic health records (EHR) becomes increasingly crucial. This study presents the GPT-Onto-CAABAC framework, integrating Generative Pretrained Transformer (GPT), medical-legal ontologies and Context-Aware Attribute-Based Access Control (CAABAC) to enhance EHR access security. Unlike traditional models, GPT-Onto-CAABAC dynamically interprets policies and adapts to changing healthcare and legal environments, offering customized access control solutions. Through empirical evaluation, this framework is shown to be effective in improving EHR security by accurately aligning access decisions with complex regulatory and situational requirements. The findings suggest its broader applicability in sectors where access control must meet stringent compliance and adaptability standards.

相關內容

Automated program repair (APR) has achieved promising results, especially using neural networks. Yet, the overwhelming majority of patches produced by APR tools are confined to one single location. When looking at the patches produced with neural repair, most of them fail to compile, while a few uncompilable ones go in the right direction. In both cases, the fundamental problem is to ignore the potential of partial patches. In this paper, we propose an iterative program repair paradigm called ITER founded on the concept of improving partial patches until they become plausible and correct. First, ITER iteratively improves partial single-location patches by fixing compilation errors and further refining the previously generated code. Second, ITER iteratively improves partial patches to construct multi-location patches, with fault localization re-execution. ITER is implemented for Java based on battle-proven deep neural networks and code representation. ITER is evaluated on 476 bugs from 10 open-source projects in Defects4J 2.0. ITER succeeds in repairing 15.5% of them, including 9 uniquely repaired multi-location bugs.

The customization of services in Fifth-generation (5G) and Beyond 5G (B5G) networks relies heavily on network slicing, which creates multiple virtual networks on a shared physical infrastructure, tailored to meet specific requirements of distinct applications, using Software Defined Networking (SDN) and Network Function Virtualization (NFV). It is imperative to ensure that network services meet the performance and reliability requirements of various applications and users, thus, service assurance is one of the critical components in network slicing. One of the key functionalities of network slicing is the ability to scale Virtualized Network Functions (VNFs) in response to changing resource demand and to meet Customer Service Level agreements (SLAs). In this paper, we introduce a proactive closed-loop algorithm for end-to-end network orchestration, designed to provide service assurance in 5G and B5G networks. We focus on dynamically scaling resources to meet key performance indicators (KPIs) specific to each network slice and operate in parallel across multiple slices, making it scalable and capable of managing completely automatically real-time service assurance. Through our experiments, we demonstrate that the proposed algorithm effectively fulfills service assurance requirements for different network slice types, thereby minimizing network resource utilization and reducing the over-provisioning of spare resources.

The advent of the era of big data provides new ideas for financial distress prediction. In order to evaluate the financial status of listed companies more accurately, this study establishes a financial distress prediction indicator system based on multi-source data by integrating three data sources: the company's internal management, the external market and online public opinion. This study addresses the redundancy and dimensional explosion problems of multi-source data integration, feature selection of the fused data, and a financial distress prediction model based on maximum relevance and minimum redundancy and support vector machine recursive feature elimination (MRMR-SVM-RFE). To verify the effectiveness of the model, we used back propagation (BP), support vector machine (SVM), and gradient boosted decision tree (GBDT) classification algorithms, and conducted an empirical study on China's listed companies based on different financial distress prediction indicator systems. MRMR-SVM-RFE feature selection can effectively extract information from multi-source fused data. The new feature dataset obtained by selection has higher prediction accuracy than the original data, and the BP classification model is better than linear regression (LR), decision tree (DT), and random forest (RF).

The escalating prevalence of diabetes globally underscores the need for diabetes management. Recent research highlights the growing focus on digital biomarkers in diabetes management, with innovations in computational frameworks and noninvasive monitoring techniques using personalized glucose metrics. However, they predominantly focus on insulin dosing and specific glucose values, or with limited attention given to overall glycemic control. This leaves a gap in expanding the scope of digital biomarkers for overall glycemic control in diabetes management. To address such a research gap, we propose GluMarker -- an end-to-end framework for modeling digital biomarkers using broader factors sources to predict glycemic control. Through the assessment and refinement of various machine learning baselines, GluMarker achieves state-of-the-art on Anderson's dataset in predicting next-day glycemic control. Moreover, our research identifies key digital biomarkers for the next day's glycemic control prediction. These identified biomarkers are instrumental in illuminating the daily factors that influence glycemic management, offering vital insights for diabetes care.

In recent years, modern techniques in deep learning and large-scale datasets have led to impressive progress in 3D instance segmentation, grasp pose estimation, and robotics. This allows for accurate detection directly in 3D scenes, object- and environment-aware grasp prediction, as well as robust and repeatable robotic manipulation. This work aims to integrate these recent methods into a comprehensive framework for robotic interaction and manipulation in human-centric environments. Specifically, we leverage 3D reconstructions from a commodity 3D scanner for open-vocabulary instance segmentation, alongside grasp pose estimation, to demonstrate dynamic picking of objects, and opening of drawers. We show the performance and robustness of our model in two sets of real-world experiments including dynamic object retrieval and drawer opening, reporting a 51% and 82% success rate respectively. Code of our framework as well as videos are available on: //spot-compose.github.io/.

Graph neural networks (GNNs) have emerged as a series of competent graph learning methods for diverse real-world scenarios, ranging from daily applications like recommendation systems and question answering to cutting-edge technologies such as drug discovery in life sciences and n-body simulation in astrophysics. However, task performance is not the only requirement for GNNs. Performance-oriented GNNs have exhibited potential adverse effects like vulnerability to adversarial attacks, unexplainable discrimination against disadvantaged groups, or excessive resource consumption in edge computing environments. To avoid these unintentional harms, it is necessary to build competent GNNs characterised by trustworthiness. To this end, we propose a comprehensive roadmap to build trustworthy GNNs from the view of the various computing technologies involved. In this survey, we introduce basic concepts and comprehensively summarise existing efforts for trustworthy GNNs from six aspects, including robustness, explainability, privacy, fairness, accountability, and environmental well-being. Additionally, we highlight the intricate cross-aspect relations between the above six aspects of trustworthy GNNs. Finally, we present a thorough overview of trending directions for facilitating the research and industrialisation of trustworthy GNNs.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.

北京阿比特科技有限公司