亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Engineers build large software systems for multiple architectures, operating systems, and configurations. A set of inconsistent or missing compiler flags generates code that catastrophically impacts the system's behavior. In the authors' industry experience, defects caused by an undesired combination of compiler flags are common in nontrivial software projects. We are unaware of any build and CI/CD systems that track how the compiler produces a specific binary in a structured manner. We postulate that a queryable database of how the compiler compiled and linked the software system will help to detect defects earlier and reduce the debugging time.

相關內容

編(bian)譯器(qi)(Compiler),是一種(zhong)計算機程序,它會將用某種(zhong)編(bian)程語言(yan)(yan)寫成(cheng)(cheng)的源代碼(ma)(原始語言(yan)(yan)),轉換(huan)成(cheng)(cheng)另一種(zhong)編(bian)程語言(yan)(yan)(目(mu)標語言(yan)(yan))。

In many consumer virtual reality (VR) applications, users embody predefined characters that offer minimal customization options, frequently emphasizing storytelling over user choice. We explore whether matching a user's physical characteristics, specifically ethnicity and gender, with their virtual self-avatar affects their sense of embodiment in VR. We conducted a 2 x 2 within-subjects experiment (n=32) with a diverse user population to explore the impact of matching or not matching a user's self-avatar to their ethnicity and gender on their sense of embodiment. Our results indicate that matching the ethnicity of the user and their self-avatar significantly enhances sense of embodiment regardless of gender, extending across various aspects, including appearance, response, and ownership. We also found that matching gender significantly enhanced ownership, suggesting that this aspect is influenced by matching both ethnicity and gender. Interestingly, we found that matching ethnicity specifically affects self-location while matching gender specifically affects one's body ownership.

Whether based on models, training data or a combination, classifiers place (possibly complex) input data into one of a relatively small number of output categories. In this paper, we study the structure of the boundary--those points for which a neighbor is classified differently--in the context of an input space that is a graph, so that there is a concept of neighboring inputs, The scientific setting is a model-based naive Bayes classifier for DNA reads produced by Next Generation Sequencers. We show that the boundary is both large and complicated in structure. We create a new measure of uncertainty, called Neighbor Similarity, that compares the result for a point to the distribution of results for its neighbors. This measure not only tracks two inherent uncertainty measures for the Bayes classifier, but also can be implemented, at a computational cost, for classifiers without inherent measures of uncertainty.

As with many tasks in engineering, structural design frequently involves navigating complex and computationally expensive problems. A prime example is the weight optimization of laminated composite materials, which to this day remains a formidable task, due to an exponentially large configuration space and non-linear constraints. The rapidly developing field of quantum computation may offer novel approaches for addressing these intricate problems. However, before applying any quantum algorithm to a given problem, it must be translated into a form that is compatible with the underlying operations on a quantum computer. Our work specifically targets stacking sequence retrieval with lamination parameters. To adapt this problem for quantum computational methods, we map the possible stacking sequences onto a quantum state space. We further derive a linear operator, the Hamiltonian, within this state space that encapsulates the loss function inherent to the stacking sequence retrieval problem. Additionally, we demonstrate the incorporation of manufacturing constraints on stacking sequences as penalty terms in the Hamiltonian. This quantum representation is suitable for a variety of classical and quantum algorithms for finding the ground state of a quantum Hamiltonian. For a practical demonstration, we chose a classical tensor network algorithm, the DMRG algorithm, to numerically validate our approach. For this purpose, we derived a matrix product operator representation of the loss function Hamiltonian and the penalty terms. Numerical trials with this algorithm successfully yielded approximate solutions, while exhibiting a tradeoff between accuracy and runtime. Although this work primarily concentrates on quantum computation, the application of tensor network algorithms presents a novel quantum-inspired approach for stacking sequence retrieval.

We present a novel approach to exploring innovation problem and solution domains using LLM fine-tuning with a custom idea database. By semantically traversing the bi-directional problem and solution tree at different temperature levels we achieve high diversity in solution edit distance while still remaining close to the original problem statement semantically. In addition to finding a variety of solutions to a given problem, this method can also be used to refine and clarify the original problem statement. As further validation of the approach, we implemented a proof-of-concept Slack bot to serve as an innovation assistant.

Wireless communication systems must increasingly support a multitude of machine-type communications (MTC) devices, thus calling for advanced strategies for active user detection (AUD). Recent literature has delved into AUD techniques based on compressed sensing, highlighting the critical role of signal sparsity. This study investigates the relationship between frequency diversity and signal sparsity in the AUD problem. Single-antenna users transmit multiple copies of non-orthogonal pilots across multiple frequency channels and the base station independently performs AUD in each channel using the orthogonal matching pursuit algorithm. We note that, although frequency diversity may improve the likelihood of successful reception of the signals, it may also damage the channel sparsity level, leading to important trade-offs. We show that a sparser signal significantly benefits AUD, surpassing the advantages brought by frequency diversity in scenarios with limited temporal resources and/or high numbers of receive antennas. Conversely, with longer pilots and fewer receive antennas, investing in frequency diversity becomes more impactful, resulting in a tenfold AUD performance improvement.

The inherent diversity of computation types within individual Deep Neural Network (DNN) models imposes a corresponding need for a varied set of computation units within hardware processors. This diversity poses a significant constraint on computation efficiency during the execution of different neural networks. In this study, we present NeuralMatrix, a framework that transforms the computation of entire DNNs into linear matrix operations. This transformation seamlessly enables the execution of various DNN models using a single General-Purpose Matrix Multiplication (GEMM) accelerator. Extensive experimental results spanning different DNN models demonstrate that our approach preserves network accuracy while providing both generality and application-specific levels of computation efficiency. This allows a broad spectrum of DNN models to be executed using a single GEMM accelerator, eliminating the need for additional special function units.

Although ubiquitous in modern vehicles, Controller Area Networks (CANs) lack basic security properties and are easily exploitable. A rapidly growing field of CAN security research has emerged that seeks to detect intrusions on CANs. Producing vehicular CAN data with a variety of intrusions is out of reach for most researchers as it requires expensive assets and expertise. To assist researchers, we present the first comprehensive guide to the existing open CAN intrusion datasets, including a quality analysis of each dataset and an enumeration of each's benefits, drawbacks, and suggested use case. Current public CAN IDS datasets are limited to real fabrication (simple message injection) attacks and simulated attacks often in synthetic data, which lack fidelity. In general, the physical effects of attacks on the vehicle are not verified in the available datasets. Only one dataset provides signal-translated data but not a corresponding raw binary version. Overall, the available data pigeon-holes CAN IDS works into testing on limited, often inappropriate data (usually with attacks that are too easily detectable to truly test the method), and this lack data has stymied comparability and reproducibility of results. As our primary contribution, we present the ROAD (Real ORNL Automotive Dynamometer) CAN Intrusion Dataset, consisting of over 3.5 hours of one vehicle's CAN data. ROAD contains ambient data recorded during a diverse set of activities, and attacks of increasing stealth with multiple variants and instances of real fuzzing, fabrication, and unique advanced attacks, as well as simulated masquerade attacks. To facilitate benchmarking CAN IDS methods that require signal-translated inputs, we also provide the signal time series format for many of the CAN captures. Our contributions aim to facilitate appropriate benchmarking and needed comparability in the CAN IDS field.

While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

北京阿比特科技有限公司