The behavior of the leading singular values and vectors of noisy low-rank matrices is fundamental to many statistical and scientific problems. Theoretical understanding currently derives from asymptotic analysis under one of two regimes: (1) the classical regime, with a fixed number of rows and large number of columns, or vice versa, and (2) the proportional regime, with large numbers of rows and columns, proportional to one another. This paper is concerned with the disproportional regime, where the matrix is either ``tall and narrow'' or ``short and wide'': we study sequences of matrices of size $n \times m_n$ with aspect ratio $ n/m_n \rightarrow 0$ or $n/m_n \rightarrow \infty$ as $n \rightarrow \infty$. This regime has important ``big data'' applications. Theory derived here shows that the displacement of the empirical singular values and vectors from their noise-free counterparts and the associated phase transitions -- well-known under proportional growth asymptotics -- still occur in the disproportionate setting. They must be quantified, however, on a novel scale of measurement that adjusts with the changing aspect ratio as the matrix size increases. In this setting, the top singular vectors corresponding to the longer of the two matrix dimensions are asymptotically uncorrelated with the noise-free signal.
The problem of function approximation by neural dynamical systems has typically been approached in a top-down manner: Any continuous function can be approximated to an arbitrary accuracy by a sufficiently complex model with a given architecture. This can lead to high-complexity controls which are impractical in applications. In this paper, we take the opposite, constructive approach: We impose various structural restrictions on system dynamics and consequently characterize the class of functions that can be realized by such a system. The systems are implemented as a cascade interconnection of a neural stochastic differential equation (Neural SDE), a deterministic dynamical system, and a readout map. Both probabilistic and geometric (Lie-theoretic) methods are used to characterize the classes of functions realized by such systems.
A novel information-theoretic approach is proposed to assess the global practical identifiability of Bayesian statistical models. Based on the concept of conditional mutual information, an estimate of information gained for each model parameter is used to quantify the identifiability with practical considerations. No assumptions are made about the structure of the statistical model or the prior distribution while constructing the estimator. The estimator has the following notable advantages: first, no controlled experiment or data is required to conduct the practical identifiability analysis; second, unlike popular variance-based global sensitivity analysis methods, different forms of uncertainties, such as model-form, parameter, or measurement can be taken into account; third, the identifiability analysis is global, and therefore independent of a realization of the parameters. If an individual parameter has low identifiability, it can belong to an identifiable subset such that parameters within the subset have a functional relationship and thus have a combined effect on the statistical model. The practical identifiability framework is extended to highlight the dependencies between parameter pairs that emerge a posteriori to find identifiable parameter subsets. The applicability of the proposed approach is demonstrated using a linear Gaussian model and a non-linear methane-air reduced kinetics model. It is shown that by examining the information gained for each model parameter along with its dependencies with other parameters, a subset of parameters that can be estimated with high posterior certainty can be found.
Opioids are an effective analgesic for acute and chronic pain, but also carry a considerable risk of addiction leading to millions of opioid use disorder (OUD) cases and tens of thousands of premature deaths in the United States yearly. Estimating OUD risk prior to prescription could improve the efficacy of treatment regimens, monitoring programs, and intervention strategies, but risk estimation is typically based on self-reported data or questionnaires. We develop an experimental design and computational methods that combines genetic variants associated with OUD with behavioral features extracted from GPS and Wi-Fi spatiotemporal coordinates to assess OUD risk. Since both OUD mobility and genetic data do not exist for the same cohort, we develop algorithms to (1) generate mobility features from empirical distributions and (2) synthesize mobility and genetic samples assuming a level of comorbidity and relative risks. We show that integrating genetic and mobility modalities improves risk modelling using classification accuracy, area under the precision-recall and receiver operator characteristic curves, and $F_1$ score. Interpreting the fitted models suggests that mobility features have more influence on OUD risk, although the genetic contribution was significant, particularly in linear models. While there exists concerns with respect to privacy, security, bias, and generalizability that must be evaluated in clinical trials before being implemented in practice, our framework provides preliminary evidence that behavioral and genetic features may improve OUD risk estimation to assist with personalized clinical decision-making.
Many stochastic processes in the physical and biological sciences can be modelled as Brownian dynamics with multiplicative noise. However, numerical integrators for these processes can lose accuracy or even fail to converge when the diffusion term is configuration-dependent. One remedy is to construct a transform to a constant-diffusion process and sample the transformed process instead. In this work, we explain how coordinate-based and time-rescaling-based transforms can be used either individually or in combination to map a general class of variable-diffusion Brownian motion processes into constant-diffusion ones. The transforms are invertible, thus allowing recovery of the original dynamics. We motivate our methodology using examples in one dimension before then considering multivariate diffusion processes. We illustrate the benefits of the transforms through numerical simulations, demonstrating how the right combination of integrator and transform can improve computational efficiency and the order of convergence to the invariant distribution. Notably, the transforms that we derive are applicable to a class of multibody, anisotropic Stokes-Einstein diffusion that has applications in biophysical modelling.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.
Mining graph data has become a popular research topic in computer science and has been widely studied in both academia and industry given the increasing amount of network data in the recent years. However, the huge amount of network data has posed great challenges for efficient analysis. This motivates the advent of graph representation which maps the graph into a low-dimension vector space, keeping original graph structure and supporting graph inference. The investigation on efficient representation of a graph has profound theoretical significance and important realistic meaning, we therefore introduce some basic ideas in graph representation/network embedding as well as some representative models in this chapter.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.