亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Globalization in the semiconductor industry enables fabless design houses to reduce their costs, save time, and make use of newer technologies. However, the offshoring of Integrated Circuit (IC) fabrication has negative sides, including threats such as Hardware Trojans (HTs) - a type of malicious logic that is not trivial to detect. One aspect of IC design that is not affected by globalization is the need for thorough verification. Verification engineers devise complex assets to make sure designs are bug-free, including assertions. This knowledge is typically not reused once verification is over. The premise of this paper is that verification assets that already exist can be turned into effective security checkers for HT detection. For this purpose, we show how assertions can be used as online monitors. To this end, we propose a security metric and an assertion selection flow that leverages Cadence JasperGold Security Path Verification (SPV). The experimental results show that our approach scales for industry-size circuits by analyzing more than 100 assertions for different Intellectual Properties (IPs) of the OpenTitan System-on-Chip (SoC). Moreover, our detection solution is pragmatic since it does not rely on the HT activation mechanism.

相關內容

ACM SIGACCESS Conference on Computers and Accessibility是為殘疾人和老年人提供與計算機相關的設計、評估、使用和教育研究的首要論壇。我們歡迎提交原始的高質量的有關計算和可訪問性的主題。今年,ASSETS首次將其范圍擴大到包括關于計算機無障礙教育相關主題的原創高質量研究。官網鏈接: · 可理解性 · Learning · EASE · 評論員 ·
2023 年 3 月 20 日

With the increasing popularity of accelerator technologies (e.g., GPUs and TPUs) and the emergence of domain-specific computing via ASICs and FPGA, the matter of heterogeneity and understanding its ramifications on the performance has become more critical than ever before. However, it is challenging to effectively educate students about the potential impacts of heterogeneity on the performance of distributed systems; and on the logic of resource allocation methods to efficiently utilize the resources. Making use of the real infrastructure for benchmarking the performance of heterogeneous machines, for different applications, with respect to different objectives, and under various workload intensities is cost- and time-prohibitive. To reinforce the quality of learning about various dimensions of heterogeneity, and to decrease the widening gap in education, we develop an open-source simulation tool, called E2C, that can help students researchers to study any type of heterogeneous (or homogeneous) computing system and measure its performance under various configurations. E2C is equipped with an intuitive graphical user interface (GUI) that enables its users to easily examine system-level solutions (scheduling, load balancing, scalability, etc.) in a controlled environment within a short time. E2C is a discrete event simulator that offers the following features: (i) simulating a heterogeneous computing system; (ii) implementing a newly developed scheduling method and plugging it into the system, (iii) measuring energy consumption and other output-related metrics; and (iv) powerful visual aspects to ease the learning curve for students. We used E2C as an assignment in the Distributed and Cloud Computing course. Our anonymous survey study indicates that students rated E2C with the score of 8.7 out of 10 for its usefulness in understanding the concepts of scheduling in heterogeneous computing.

Out-of-distribution (OOD) detection aims at enhancing standard deep neural networks to distinguish anomalous inputs from original training data. Previous progress has introduced various approaches where the in-distribution training data and even several OOD examples are prerequisites. However, due to privacy and security, auxiliary data tends to be impractical in a real-world scenario. In this paper, we propose a data-free method without training on natural data, called Class-Conditional Impressions Reappearing (C2IR), which utilizes image impressions from the fixed model to recover class-conditional feature statistics. Based on that, we introduce Integral Probability Metrics to estimate layer-wise class-conditional deviations and obtain layer weights by Measuring Gradient-based Importance (MGI). The experiments verify the effectiveness of our method and indicate that C2IR outperforms other post-hoc methods and reaches comparable performance to the full access (ID and OOD) detection method, especially in the far-OOD dataset (SVHN).

Copyright protection for deep neural networks (DNNs) is an urgent need for AI corporations. To trace illegally distributed model copies, DNN watermarking is an emerging technique for embedding and verifying secret identity messages in the prediction behaviors or the model internals. Sacrificing less functionality and involving more knowledge about the target DNN, the latter branch called \textit{white-box DNN watermarking} is believed to be accurate, credible and secure against most known watermark removal attacks, with emerging research efforts in both the academy and the industry. In this paper, we present the first systematic study on how the mainstream white-box DNN watermarks are commonly vulnerable to neural structural obfuscation with \textit{dummy neurons}, a group of neurons which can be added to a target model but leave the model behavior invariant. Devising a comprehensive framework to automatically generate and inject dummy neurons with high stealthiness, our novel attack intensively modifies the architecture of the target model to inhibit the success of watermark verification. With extensive evaluation, our work for the first time shows that nine published watermarking schemes require amendments to their verification procedures.

Understanding and analyzing markets is crucial, yet analytical equilibrium solutions remain largely infeasible. Recent breakthroughs in equilibrium computation rely on zeroth-order policy gradient estimation. These approaches commonly suffer from high variance and are computationally expensive. The use of fully differentiable simulators would enable more efficient gradient estimation. However, the discrete allocation of goods in economic simulations is a non-differentiable operation. This renders the first-order Monte Carlo gradient estimator inapplicable and the learning feedback systematically misleading. We propose a novel smoothing technique that creates a surrogate market game, in which first-order methods can be applied. We provide theoretical bounds on the resulting bias which justifies solving the smoothed game instead. These bounds also allow choosing the smoothing strength a priori such that the resulting estimate has low variance. Furthermore, we validate our approach via numerous empirical experiments. Our method theoretically and empirically outperforms zeroth-order methods in approximation quality and computational efficiency.

The conventional wisdom behind learning deep classification models is to focus on bad-classified examples and ignore well-classified examples that are far from the decision boundary. For instance, when training with cross-entropy loss, examples with higher likelihoods (i.e., well-classified examples) contribute smaller gradients in back-propagation. However, we theoretically show that this common practice hinders representation learning, energy optimization, and margin growth. To counteract this deficiency, we propose to reward well-classified examples with additive bonuses to revive their contribution to the learning process. This counterexample theoretically addresses these three issues. We empirically support this claim by directly verifying the theoretical results or significant performance improvement with our counterexample on diverse tasks, including image classification, graph classification, and machine translation. Furthermore, this paper shows that we can deal with complex scenarios, such as imbalanced classification, OOD detection, and applications under adversarial attacks because our idea can solve these three issues. Code is available at: //github.com/lancopku/well-classified-examples-are-underestimated.

Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.

Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.

北京阿比特科技有限公司