While there exist scores of natural languages, each with its unique features and idiosyncrasies, they all share a unifying theme: enabling human communication. We may thus reasonably predict that human cognition shapes how these languages evolve and are used. Assuming that the capacity to process information is roughly constant across human populations, we expect a surprisal--duration trade-off to arise both across and within languages. We analyse this trade-off using a corpus of 600 languages and, after controlling for several potential confounds, we find strong supporting evidence in both settings. Specifically, we find that, on average, phones are produced faster in languages where they are less surprising, and vice versa. Further, we confirm that more surprising phones are longer, on average, in 319 languages out of the 600. We thus conclude that there is strong evidence of a surprisal--duration trade-off in operation, both across and within the world's languages.
Transformer-based language models such as BERT have outperformed previous models on a large number of English benchmarks, but their evaluation is often limited to English or a small number of well-resourced languages. In this work, we evaluate monolingual, multilingual, and randomly initialized language models from the BERT family on a variety of Uralic languages including Estonian, Finnish, Hungarian, Erzya, Moksha, Karelian, Livvi, Komi Permyak, Komi Zyrian, Northern S\'ami, and Skolt S\'ami. When monolingual models are available (currently only et, fi, hu), these perform better on their native language, but in general they transfer worse than multilingual models or models of genetically unrelated languages that share the same character set. Remarkably, straightforward transfer of high-resource models, even without special efforts toward hyperparameter optimization, yields what appear to be state of the art POS and NER tools for the minority Uralic languages where there is sufficient data for finetuning.
We explore some strategies which tend to perform well in the IPD.We start off by showing the significance of Tit-For-Tat strategies inevolutionary game theory. This is followed by a theoretical derivationof zero-determinant strategies, where we highlight an error on boundsfor scale parameters from the original paper on ZD strategies[6]. Wethen present examples of such strategies and create a custom playerdrawing inspiration from Markov Decision Processes. At the end wepit them all against each other and see how they perform in an IPDtournament.
Multidimensional heterogeneity and endogeneity are important features of models with multiple treatments. We consider a heterogeneous coefficients model where the outcome is a linear combination of dummy treatment variables, with each variable representing a different kind of treatment. We use control variables to give necessary and sufficient conditions for identification of average treatment effects. With mutually exclusive treatments we find that, provided the heterogeneous coefficients are mean independent from treatments given the controls, a simple identification condition is that the generalized propensity scores (Imbens, 2000) be bounded away from zero and that their sum be bounded away from one, with probability one. Our analysis extends to distributional and quantile treatment effects, as well as corresponding treatment effects on the treated. These results generalize the classical identification result of Rosenbaum and Rubin (1983) for binary treatments.
When dealing with sensitive data in automated data-driven decision-making, an important concern is to learn predictors with high performance towards a class label, whilst minimising for the discrimination towards any sensitive attribute, like gender or race, induced from biased data. A few hybrid tree optimisation criteria exist that combine classification performance and fairness. Although the threshold-free ROC-AUC is the standard for measuring traditional classification model performance, current fair tree classification methods mainly optimise for a fixed threshold on both the classification task as well as the fairness metric. In this paper, we propose a compound splitting criterion which combines threshold-free (i.e., strong) demographic parity with ROC-AUC termed SCAFF -- Splitting Criterion AUC for Fairness -- and easily extends to bagged and boosted tree frameworks. Our method simultaneously leverages multiple sensitive attributes of which the values may be multicategorical or intersectional, and is tunable with respect to the unavoidable performance-fairness trade-off. In our experiments, we demonstrate how SCAFF generates models with performance and fairness with respect to binary, multicategorical, and multiple sensitive attributes.
Practical needs of developing task-oriented dialogue assistants require the ability to understand many languages. Novel benchmarks for multilingual natural language understanding (NLU) include monolingual sentences in several languages, annotated with intents and slots. In such setup models for cross-lingual transfer show remarkable performance in joint intent recognition and slot filling. However, existing benchmarks lack of code-switched utterances, which are difficult to gather and label due to complexity in the grammatical structure. The evaluation of NLU models seems biased and limited, since code-switching is being left out of scope. Our work adopts recognized methods to generate plausible and naturally-sounding code-switched utterances and uses them to create a synthetic code-switched test set. Based on experiments, we report that the state-of-the-art NLU models are unable to handle code-switching. At worst, the performance, evaluated by semantic accuracy, drops as low as 15\% from 80\% across languages. Further we show, that pre-training on synthetic code-mixed data helps to maintain performance on the proposed test set at a comparable level with monolingual data. Finally, we analyze different language pairs and show that the closer the languages are, the better the NLU model handles their alternation. This is in line with the common understanding of how multilingual models conduct transferring between languages
The design of widespread vision-and-language datasets and pre-trained encoders directly adopts, or draws inspiration from, the concepts and images of ImageNet. While one can hardly overestimate how much this benchmark contributed to progress in computer vision, it is mostly derived from lexical databases and image queries in English, resulting in source material with a North American or Western European bias. Therefore, we devise a new protocol to construct an ImageNet-style hierarchy representative of more languages and cultures. In particular, we let the selection of both concepts and images be entirely driven by native speakers, rather than scraping them automatically. Specifically, we focus on a typologically diverse set of languages, namely, Indonesian, Mandarin Chinese, Swahili, Tamil, and Turkish. On top of the concepts and images obtained through this new protocol, we create a multilingual dataset for {M}ulticultur{a}l {R}easoning over {V}ision and {L}anguage (MaRVL) by eliciting statements from native speaker annotators about pairs of images. The task consists of discriminating whether each grounded statement is true or false. We establish a series of baselines using state-of-the-art models and find that their cross-lingual transfer performance lags dramatically behind supervised performance in English. These results invite us to reassess the robustness and accuracy of current state-of-the-art models beyond a narrow domain, but also open up new exciting challenges for the development of truly multilingual and multicultural systems.
We introduce the Neural State Machine, seeking to bridge the gap between the neural and symbolic views of AI and integrate their complementary strengths for the task of visual reasoning. Given an image, we first predict a probabilistic graph that represents its underlying semantics and serves as a structured world model. Then, we perform sequential reasoning over the graph, iteratively traversing its nodes to answer a given question or draw a new inference. In contrast to most neural architectures that are designed to closely interact with the raw sensory data, our model operates instead in an abstract latent space, by transforming both the visual and linguistic modalities into semantic concept-based representations, thereby achieving enhanced transparency and modularity. We evaluate our model on VQA-CP and GQA, two recent VQA datasets that involve compositionality, multi-step inference and diverse reasoning skills, achieving state-of-the-art results in both cases. We provide further experiments that illustrate the model's strong generalization capacity across multiple dimensions, including novel compositions of concepts, changes in the answer distribution, and unseen linguistic structures, demonstrating the qualities and efficacy of our approach.
Generating natural language requires conveying content in an appropriate style. We explore two related tasks on generating text of varying formality: monolingual formality transfer and formality-sensitive machine translation. We propose to solve these tasks jointly using multi-task learning, and show that our models achieve state-of-the-art performance for formality transfer and are able to perform formality-sensitive translation without being explicitly trained on style-annotated translation examples.
Monolingual data have been demonstrated to be helpful in improving translation quality of both statistical machine translation (SMT) systems and neural machine translation (NMT) systems, especially in resource-poor or domain adaptation tasks where parallel data are not rich enough. In this paper, we propose a novel approach to better leveraging monolingual data for neural machine translation by jointly learning source-to-target and target-to-source NMT models for a language pair with a joint EM optimization method. The training process starts with two initial NMT models pre-trained on parallel data for each direction, and these two models are iteratively updated by incrementally decreasing translation losses on training data. In each iteration step, both NMT models are first used to translate monolingual data from one language to the other, forming pseudo-training data of the other NMT model. Then two new NMT models are learnt from parallel data together with the pseudo training data. Both NMT models are expected to be improved and better pseudo-training data can be generated in next step. Experiment results on Chinese-English and English-German translation tasks show that our approach can simultaneously improve translation quality of source-to-target and target-to-source models, significantly outperforming strong baseline systems which are enhanced with monolingual data for model training including back-translation.