Generalized mutual information (GMI) is used to compute achievable rates for fading channels with various types of channel state information at the transmitter (CSIT) and receiver (CSIR). The GMI is based on variations of auxiliary channels with additive white Gaussian noise (AWGN). One variation is for receivers unaware of the CSIT where adaptive codewords, or Shannon strategies, achieve capacity. The GMI is then based on auxiliary channels with inputs that are linear functions of the adaptive codewords' symbols. For scalar channels, the input that maximizes the GMI is shown to give a conventional codebook but where the amplitude and phase of each symbol is modified based on the CSIT. A second variation partitions the channel output alphabet and has a different auxiliary channel for each subset of the partition. The partitioning helps to determine the capacity scaling at high signal to noise ratios. A class of power control policies is described for partial CSIR, including a truncated minimum mean square error policy for full CSIT and quadratic waterfilling if the CSIT is known at the receiver. Several examples for fading channels with AWGN illustrate the theory, with a focus on on-off fading and Rayleigh fading. The capacity results are generalized to block fading channels with in-block feedback, including capacity expressions based on mutual information and directed information.
Human-robot interaction relies on a noise-robust audio processing module capable of estimating target speech from audio recordings impacted by environmental noise, as well as self-induced noise, so-called ego-noise. While external ambient noise sources vary from environment to environment, ego-noise is mainly caused by the internal motors and joints of a robot. Ego-noise and environmental noise reduction are often decoupled, i.e., ego-noise reduction is performed without considering environmental noise. Recently, a variational autoencoder (VAE)-based speech model has been combined with a fully adaptive non-negative matrix factorization (NMF) noise model to recover clean speech under different environmental noise disturbances. However, its enhancement performance is limited in adverse acoustic scenarios involving, e.g. ego-noise. In this paper, we propose a multichannel partially adaptive scheme to jointly model ego-noise and environmental noise utilizing the VAE-NMF framework, where we take advantage of spatially and spectrally structured characteristics of ego-noise by pre-training the ego-noise model, while retaining the ability to adapt to unknown environmental noise. Experimental results show that our proposed approach outperforms the methods based on a completely fixed scheme and a fully adaptive scheme when ego-noise and environmental noise are present simultaneously.
Recent papers have introduced a novel approach to explain why a Predictive Process Monitoring (PPM) model for outcome-oriented predictions provides wrong predictions. Moreover, they have shown how to exploit the explanations, obtained using state-of-the art post-hoc explainers, to identify the most common features that induce a predictor to make mistakes in a semi-automated way, and, in turn, to reduce the impact of those features and increase the accuracy of the predictive model. This work starts from the assumption that frequent control flow patterns in event logs may represent important features that characterize, and therefore explain, a certain prediction. Therefore, in this paper, we (i) employ a novel encoding able to leverage DECLARE constraints in Predictive Process Monitoring and compare the effectiveness of this encoding with Predictive Process Monitoring state-of-the art encodings, in particular for the task of outcome-oriented predictions; (ii) introduce a completely automated pipeline for the identification of the most common features inducing a predictor to make mistakes; and (iii) show the effectiveness of the proposed pipeline in increasing the accuracy of the predictive model by validating it on different real-life datasets.
Functional regression analysis is an established tool for many contemporary scientific applications. Regression problems involving large and complex data sets are ubiquitous, and feature selection is crucial for avoiding overfitting and achieving accurate predictions. We propose a new, flexible, and ultra-efficient approach to perform feature selection in a sparse high dimensional function-on-function regression problem, and we show how to extend it to the scalar-on-function framework. Our method combines functional data, optimization, and machine learning techniques to perform feature selection and parameter estimation simultaneously. We exploit the properties of Functional Principal Components, and the sparsity inherent to the Dual Augmented Lagrangian problem to significantly reduce computational cost, and we introduce an adaptive scheme to improve selection accuracy. Through an extensive simulation study, we benchmark our approach to the best existing competitors and demonstrate a massive gain in terms of CPU time and selection performance without sacrificing the quality of the coefficients' estimation. Finally, we present an application to brain fMRI data from the AOMIC PIOP1 study.
This work is motivated by learning the individualized minimal clinically important difference, a vital concept to assess clinical importance in various biomedical studies. We formulate the scientific question into a high-dimensional statistical problem where the parameter of interest lies in an individualized linear threshold. The goal is to develop a hypothesis testing procedure for the significance of a single element in this parameter as well as of a linear combination of this parameter. The difficulty dues to the high-dimensional nuisance in developing such a testing procedure, and also stems from the fact that this high-dimensional threshold model is nonregular and the limiting distribution of the corresponding estimator is nonstandard. To deal with these challenges, we construct a test statistic via a new bias-corrected smoothed decorrelated score approach, and establish its asymptotic distributions under both null and local alternative hypotheses. We propose a double-smoothing approach to select the optimal bandwidth in our test statistic and provide theoretical guarantees for the selected bandwidth. We conduct simulation studies to demonstrate how our proposed procedure can be applied in empirical studies. We apply the proposed method to a clinical trial where the scientific goal is to assess the clinical importance of a surgery procedure.
This work proposes Adaptive Facilitated Mutation, a self-adaptive mutation method for Structured Grammatical Evolution (SGE), biologically inspired by the theory of facilitated variation. In SGE, the genotype of individuals contains a list for each non-terminal of the grammar that defines the search space. In our proposed mutation, each individual contains an array with a different, self-adaptive mutation rate for each non-terminal. We also propose Function Grouped Grammars, a grammar design procedure, to enhance the benefits of the proposed mutation. Experiments were conducted on three symbolic regression benchmarks using Probabilistic Structured Grammatical Evolution (PSGE), a variant of SGE. Results show our approach is similar or better when compared with the standard grammar and mutation.
We propose an incentive mechanism for the sponsored content provider market in which the communication of users can be represented by a graph and the private information of the users is assumed to have a continuous distribution function. The content provider stipulates incentive rewards to encourage users to reveal their private information truthfully and increase their content demand, which leads to an increase in advertising revenue. We prove that all users gain a non-negative utility and disclose their private information truthfully. Moreover, we study the effectiveness and scalability of the proposed mechanism in a case study with different network structures.
The errors occurring in DNA-based storage are correlated in nature, which is a direct consequence of the synthesis and sequencing processes. In this paper, we consider the memory-$k$ nanopore channel model recently introduced by Hamoum et al., which models the inherent memory of the channel. We derive the maximum a posteriori (MAP) decoder for this channel model. The derived MAP decoder allows us to compute achievable information rates for the true DNA storage channel assuming a mismatched decoder matched to the memory-$k$ nanopore channel model, and quantify the loss in performance assuming a small memory length--and hence limited decoding complexity. Furthermore, the derived MAP decoder can be used to design error-correcting codes tailored to the DNA storage channel. We show that a concatenated coding scheme with an outer low-density parity-check code and an inner convolutional code yields excellent performance.
In many applications, ads are displayed together with the prices, so as to provide a direct comparison among similar products or services. The price-displaying feature not only influences the consumers' decisions, but also affects the advertisers' bidding behaviors. In this paper, we study ad auctions with display prices from the perspective of mechanism design, in which advertisers are asked to submit both the costs and prices of their products. We provide a characterization for all incentive compatible auctions with display prices, and use it to design auctions under two scenarios. In the former scenario, the display prices are assumed to be exogenously determined. For this setting, we derive the welfare-maximizing and revenue-maximizing auctions for any realization of the price profile. In the latter, advertisers are allowed to strategize display prices in their own interests. We investigate two families of allocation policies within the scenario and identify the equilibrium prices accordingly. Our results reveal that the display prices do affect the design of ad auctions and the platform can leverage such information to optimize the performance of ad delivery.
Control Barrier Functions offer safety certificates by dictating controllers that enforce safety constraints. However, their response depends on the classK function that is used to restrict the rate of change of the barrier function along the system trajectories. This paper introduces the notion of Rate Tunable Control Barrier Function (RT-CBF), which allows for online tuning of the response of CBF-based controllers. In contrast to the existing CBF approaches that use a fixed (predefined) classK function to ensure safety, we parameterize and adapt the classK function parameters online. Furthermore, we discuss the challenges associated with multiple barrier constraints, namely ensuring that they admit a common control input that satisfies them simultaneously for all time. In practice, RT-CBF enables designing parameter dynamics for (1) a better-performing response, where performance is defined in terms of the cost accumulated over a time horizon, or (2) a less conservative response. We propose a model-predictive framework that computes the sensitivity of the future states with respect to the parameters and uses Sequential Quadratic Programming for deriving an online law to update the parameters in the direction of improving the performance. When prediction is not possible, we also provide point-wise sufficient conditions to be imposed on any user-given parameter dynamics so that multiple CBF constraints continue to admit common control input with time. Finally, we introduce RT-CBFs for decentralized uncooperative multi-agent systems, where a trust factor, computed based on the instantaneous ease of constraint satisfaction, is used to update parameters online for a less conservative response.
Invariant approaches have been remarkably successful in tackling the problem of domain generalization, where the objective is to perform inference on data distributions different from those used in training. In our work, we investigate whether it is possible to leverage domain information from the unseen test samples themselves. We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model, that takes both the input as well as its domain into account while making predictions. For unseen domains, our method simply uses few unlabelled test examples to construct the domain embedding. This enables adaptive classification on any unseen domain. Our approach achieves state-of-the-art performance on various domain generalization benchmarks. In addition, we introduce the first real-world, large-scale domain generalization benchmark, Geo-YFCC, containing 1.1M samples over 40 training, 7 validation, and 15 test domains, orders of magnitude larger than prior work. We show that the existing approaches either do not scale to this dataset or underperform compared to the simple baseline of training a model on the union of data from all training domains. In contrast, our approach achieves a significant improvement.