Inversion methods, such as Textual Inversion, generate personalized images by incorporating concepts of interest provided by user images. However, existing methods often suffer from overfitting issues, where the dominant presence of inverted concepts leads to the absence of other desired concepts. It stems from the fact that during inversion, the irrelevant semantics in the user images are also encoded, forcing the inverted concepts to occupy locations far from the core distribution in the embedding space. To address this issue, we propose a method that guides the inversion process towards the core distribution for compositional embeddings. Additionally, we introduce a spatial regularization approach to balance the attention on the concepts being composed. Our method is designed as a post-training approach and can be seamlessly integrated with other inversion methods. Experimental results demonstrate the effectiveness of our proposed approach in mitigating the overfitting problem and generating more diverse and balanced compositions of concepts in the synthesized images. The source code is available at //github.com/zhangxulu1996/Compositional-Inversion.
Recommender systems (RS), serving at the forefront of Human-centered AI, are widely deployed in almost every corner of the web and facilitate the human decision-making process. However, despite their enormous capabilities and potential, RS may also lead to undesired effects on users, items, producers, platforms, or even the society at large, such as compromised user trust due to non-transparency, unfair treatment of different consumers, or producers, privacy concerns due to extensive use of user's private data for personalization, just to name a few. All of these create an urgent need for Trustworthy Recommender Systems (TRS) so as to mitigate or avoid such adverse impacts and risks. In this survey, we will introduce techniques related to trustworthy recommendation, including but not limited to explainable recommendation, fairness in recommendation, privacy-aware recommendation, robustness in recommendation, user-controllable recommendation, as well as the relationship between these different perspectives in terms of trustworthy recommendation. Through this survey, we hope to deliver readers with a comprehensive view of the research area and raise attention to the community about the importance, existing research achievements, and future research directions on trustworthy recommendation.
Artificial intelligence workloads, especially transformer models, exhibit emergent sparsity in which computations perform selective sparse access to dense data. The workloads are inefficient on hardware designed for dense computations and do not map well onto sparse data representations. We build a vectorized and parallel matrix-multiplication system A X B = C that eliminates unnecessary computations and avoids branches based on a runtime evaluation of sparsity. We use a combination of dynamic code lookup to adapt to the specific sparsity encoded in the B matrix and preprocessing of sparsity maps of the A and B matrices to compute conditional branches once for the whole computation. For a wide range of sparsity, from 60% to 95% zeros, our implementation performs fewer instructions and increases performance when compared with Intel MKL's dense or sparse matrix multiply routines. Benefits can be as large as 2 times speedup and 4 times fewer instructions.
Matrix factorization (MF) is a simple collaborative filtering technique that achieves superior recommendation accuracy by decomposing the user-item interaction matrix into user and item latent matrices. Because the model typically learns each interaction independently, it may overlook the underlying shared dependencies between users and items, resulting in less stable and interpretable recommendations. Based on these insights, we propose "Hierarchical Matrix Factorization" (HMF), which incorporates clustering concepts to capture the hierarchy, where leaf nodes and other nodes correspond to users/items and clusters, respectively. Central to our approach, called hierarchical embeddings, is the additional decomposition of the latent matrices (embeddings) into probabilistic connection matrices, which link the hierarchy, and a root cluster latent matrix. The embeddings are differentiable, allowing simultaneous learning of interactions and clustering using a single gradient descent method. Furthermore, the obtained cluster-specific interactions naturally summarize user-item interactions and provide interpretability. Experimental results on ratings and ranking predictions show that HMF outperforms existing MF methods, in particular achieving a 1.37 point improvement in RMSE for sparse interactions. Additionally, it was confirmed that the clustering integration of HMF has the potential for faster learning convergence and mitigation of overfitting compared to MF, and also provides interpretability through a cluster-centered case study.
Sequence labeling models often benefit from incorporating external knowledge. However, this practice introduces data heterogeneity and complicates the model with additional modules, leading to increased expenses for training a high-performing model. To address this challenge, we propose a two-stage curriculum learning (TCL) framework specifically designed for sequence labeling tasks. The TCL framework enhances training by gradually introducing data instances from easy to hard, aiming to improve both performance and training speed. Furthermore, we explore different metrics for assessing the difficulty levels of sequence labeling tasks. Through extensive experimentation on six Chinese word segmentation (CWS) and Part-of-speech tagging (POS) datasets, we demonstrate the effectiveness of our model in enhancing the performance of sequence labeling models. Additionally, our analysis indicates that TCL accelerates training and alleviates the slow training problem associated with complex models.
Diffusion models generate highly realistic images by learning a multi-step denoising process, naturally embodying the principles of multi-task learning (MTL). Despite the inherent connection between diffusion models and MTL, there remains an unexplored area in designing neural architectures that explicitly incorporate MTL into the framework of diffusion models. In this paper, we present Denoising Task Routing (DTR), a simple add-on strategy for existing diffusion model architectures to establish distinct information pathways for individual tasks within a single architecture by selectively activating subsets of channels in the model. What makes DTR particularly compelling is its seamless integration of prior knowledge of denoising tasks into the framework: (1) Task Affinity: DTR activates similar channels for tasks at adjacent timesteps and shifts activated channels as sliding windows through timesteps, capitalizing on the inherent strong affinity between tasks at adjacent timesteps. (2) Task Weights: During the early stages (higher timesteps) of the denoising process, DTR assigns a greater number of task-specific channels, leveraging the insight that diffusion models prioritize reconstructing global structure and perceptually rich contents in earlier stages, and focus on simple noise removal in later stages. Our experiments reveal that DTR not only consistently boosts diffusion models' performance across different evaluation protocols without adding extra parameters but also accelerates training convergence. Finally, we show the complementarity between our architectural approach and existing MTL optimization techniques, providing a more complete view of MTL in the context of diffusion training. Significantly, by leveraging this complementarity, we attain matched performance of DiT-XL using the smaller DiT-L with a reduction in training iterations from 7M to 2M.
We propose a new method for autonomous navigation in uneven terrains by utilizing a sparse Gaussian Process (SGP) based local perception model. The SGP local perception model is trained on local ranging observation (pointcloud) to learn the terrain elevation profile and extract the feasible navigation subgoals around the robot. Subsequently, a cost function, which prioritizes the safety of the robot in terms of keeping the robot's roll and pitch angles bounded within a specified range, is used to select a safety-aware subgoal that leads the robot to its final destination. The algorithm is designed to run in real-time and is intensively evaluated in simulation and real world experiments. The results compellingly demonstrate that our proposed algorithm consistently navigates uneven terrains with high efficiency and surpasses the performance of other planners. The code and video can be found here: //rb.gy/3ov2r8
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.