亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Motivated by the goals of dataset pruning and defect identification, a growing body of methods have been developed to score individual examples within a dataset. These methods, which we call "example difficulty scores", are typically used to rank or categorize examples, but the consistency of rankings between different training runs, scoring methods, and model architectures is generally unknown. To determine how example rankings vary due to these random and controlled effects, we systematically compare different formulations of scores over a range of runs and model architectures. We find that scores largely share the following traits: they are noisy over individual runs of a model, strongly correlated with a single notion of difficulty, and reveal examples that range from being highly sensitive to insensitive to the inductive biases of certain model architectures. Drawing from statistical genetics, we develop a simple method for fingerprinting model architectures using a few sensitive examples. These findings guide practitioners in maximizing the consistency of their scores (e.g. by choosing appropriate scoring methods, number of runs, and subsets of examples), and establishes comprehensive baselines for evaluating scores in the future.

相關內容

Although robust statistical estimators are less affected by outlying observations, their computation is usually more challenging. This is particularly the case in high-dimensional sparse settings. The availability of new optimization procedures, mainly developed in the computer science domain, offers new possibilities for the field of robust statistics. This paper investigates how such procedures can be used for robust sparse association estimators. The problem can be split into a robust estimation step followed by an optimization for the remaining decoupled, (bi-)convex problem. A combination of the augmented Lagrangian algorithm and adaptive gradient descent is implemented to also include suitable constraints for inducing sparsity. We provide results concerning the precision of the algorithm and show the advantages over existing algorithms in this context. High-dimensional empirical examples underline the usefulness of this procedure. Extensions to other robust sparse estimators are possible.

Recent developments enable the quantification of causal control given a structural causal model (SCM). This has been accomplished by introducing quantities which encode changes in the entropy of one variable when intervening on another. These measures, named causal entropy and causal information gain, aim to address limitations in existing information theoretical approaches for machine learning tasks where causality plays a crucial role. They have not yet been properly mathematically studied. Our research contributes to the formal understanding of the notions of causal entropy and causal information gain by establishing and analyzing fundamental properties of these concepts, including bounds and chain rules. Furthermore, we elucidate the relationship between causal entropy and stochastic interventions. We also propose definitions for causal conditional entropy and causal conditional information gain. Overall, this exploration paves the way for enhancing causal machine learning tasks through the study of recently-proposed information theoretic quantities grounded in considerations about causality.

Index spaces serve as valuable metric models for studying properties relevant to various applications, such as social science or economics. These properties are represented by real Lipschitz functions that describe the degree of association with each element within the underlying metric space. After determining the index value within a given sample subset, the classic McShane and Whitney formulas allow a Lipschitz regression procedure to be performed to extend the index values over the entire metric space. To improve the adaptability of the metric model to specific scenarios, this paper introduces the concept of a composition metric, which involves composing a metric with an increasing, positive and subadditive function $\phi$. The results presented here extend well-established results for Lipschitz indices on metric spaces to composition metrics. In addition, we establish the corresponding approximation properties that facilitate the use of this functional structure. To illustrate the power and simplicity of this mathematical framework, we provide a concrete application involving the modelling of livability indices in North American cities.

In a misspecified social learning setting, agents are condescending if they perceive their peers as having private information that is of lower quality than it is in reality. Applying this to a standard sequential model, we show that outcomes improve when agents are mildly condescending. In contrast, too much condescension leads to worse outcomes, as does anti-condescension.

As datasets used in scientific applications become more complex, studying the geometry and topology of data has become an increasingly prevalent part of the data analysis process. This can be seen for example with the growing interest in topological tools such as persistent homology. However, on the one hand, topological tools are inherently limited to providing only coarse information about the underlying space of the data. On the other hand, more geometric approaches rely predominately on the manifold hypothesis, which asserts that the underlying space is a smooth manifold. This assumption fails for many physical models where the underlying space contains singularities. In this paper we develop a machine learning pipeline that captures fine-grain geometric information without having to rely on any smoothness assumptions. Our approach involves working within the scope of algebraic geometry and algebraic varieties instead of differential geometry and smooth manifolds. In the setting of the variety hypothesis, the learning problem becomes to find the underlying variety using sample data. We cast this learning problem into a Maximum A Posteriori optimization problem which we solve in terms of an eigenvalue computation. Having found the underlying variety, we explore the use of Gr\"obner bases and numerical methods to reveal information about its geometry. In particular, we propose a heuristic for numerically detecting points lying near the singular locus of the underlying variety.

Recent advances in operations research and machine learning have revived interest in solving complex real-world, large-size traffic control problems. With the increasing availability of road sensor data, deterministic parametric models have proved inadequate in describing the variability of real-world data, especially in congested area of the density-flow diagram. In this paper we estimate the stochastic density-flow relation introducing a nonparametric method called convex quantile regression. The proposed method does not depend on any prior functional form assumptions, but thanks to the concavity constraints, the estimated function satisfies the theoretical properties of the density-flow curve. The second contribution is to develop the new convex quantile regression with bags (CQRb) approach to facilitate practical implementation of CQR to the real-world data. We illustrate the CQRb estimation process using the road sensor data from Finland in years 2016-2018. Our third contribution is to demonstrate the excellent out-of-sample predictive power of the proposed CQRb method in comparison to the standard parametric deterministic approach.

To analyze the worst-case running time of branching algorithms, the majority of work in exponential time algorithms focuses on designing complicated branching rules over developing better analysis methods for simple algorithms. In the mid-$2000$s, Fomin et al. [2005] introduced measure & conquer, an advanced general analysis method, sparking widespread adoption for obtaining tighter worst-case running time upper bounds for many fundamental NP-complete problems. Yet, much potential in this direction remains untapped, as most subsequent work applied it without further advancement. Motivated by this, we present piecewise analysis, a new general method that analyzes the running time of branching algorithms. Our approach is to define a similarity ratio that divides instances into groups and then analyze the running time within each group separately. The similarity ratio is a scale between two parameters of an instance I. Instead of relying on a single measure and a single analysis for the whole instance space, our method allows to take advantage of different intrinsic properties of instances with different similarity ratios. To showcase its potential, we reanalyze two $17$-year-old algorithms from Fomin et al. [2007] that solve $4$-Coloring and #$3$-Coloring respectively. The original analysis in their paper gave running times of $O(1.7272^n)$ and $O(1.6262^n)$ respectively for these algorithms, our analysis improves these running times to $O(1.7215^n)$ and $O(1.6232^n)$. Among the two improvements, our new running time $O(1.7215^n)$ is the first improvement in the best known running time for the 4-Coloring problem since 2007.

This paper presents a new generalization error analysis for Decentralized Stochastic Gradient Descent (D-SGD) based on algorithmic stability. The obtained results overhaul a series of recent works that suggested an increased instability due to decentralization and a detrimental impact of poorly-connected communication graphs on generalization. On the contrary, we show, for convex, strongly convex and non-convex functions, that D-SGD can always recover generalization bounds analogous to those of classical SGD, suggesting that the choice of graph does not matter. We then argue that this result is coming from a worst-case analysis, and we provide a refined data-dependent generalization bound for general convex functions. This new bound reveals that the choice of graph can in fact improve the worst-case bound in certain regimes, and that surprisingly, a poorly-connected graph can even be beneficial.

Various methods for designing input features have been proposed for fault recognition in rotating machines using one-dimensional raw sensor data. The available methods are complex, rely on empirical approaches, and may differ depending on the condition monitoring data used. Therefore, this article proposes a novel algorithm to design input features that unifies the feature extraction process for different time-series sensor data. This new insight for designing/extracting input features is obtained through the lens of histogram theory. The proposed algorithm extracts discriminative input features, which are suitable for a simple classifier to deep neural network-based classifiers. The designed input features are given as input to the classifier with end-to-end training in a single framework for machine conditions recognition. The proposed scheme has been validated through three real-time datasets: a) acoustic dataset, b) CWRU vibration dataset, and c) IMS vibration dataset. The real-time results and comparative study show the effectiveness of the proposed scheme for the prediction of the machine's health states.

Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang
Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.

北京阿比特科技有限公司