亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the development of computational intelligence algorithms, unsupervised monocular depth and pose estimation framework, which is driven by warped photometric consistency, has shown great performance in the daytime scenario. While in some challenging environments, like night and rainy night, the essential photometric consistency hypothesis is untenable because of the complex lighting and reflection, so that the above unsupervised framework cannot be directly applied to these complex scenarios. In this paper, we investigate the problem of unsupervised monocular depth estimation in highly complex scenarios and address this challenging problem by adopting an image transfer-based domain adaptation framework. We adapt the depth model trained on day-time scenarios to be applicable to night-time scenarios, and constraints on both feature space and output space promote the framework to learn the key features for depth decoding. Meanwhile, we further tackle the effects of unstable image transfer quality on domain adaptation, and an image adaptation approach is proposed to evaluate the quality of transferred images and re-weight the corresponding losses, so as to improve the performance of the adapted depth model. Extensive experiments show the effectiveness of the proposed unsupervised framework in estimating the dense depth map from highly complex images.

相關內容

Existing self-supervised monocular depth estimation methods can get rid of expensive annotations and achieve promising results. However, these methods suffer from severe performance degradation when directly adopting a model trained on a fixed resolution to evaluate at other different resolutions. In this paper, we propose a resolution adaptive self-supervised monocular depth estimation method (RA-Depth) by learning the scale invariance of the scene depth. Specifically, we propose a simple yet efficient data augmentation method to generate images with arbitrary scales for the same scene. Then, we develop a dual high-resolution network that uses the multi-path encoder and decoder with dense interactions to aggregate multi-scale features for accurate depth inference. Finally, to explicitly learn the scale invariance of the scene depth, we formulate a cross-scale depth consistency loss on depth predictions with different scales. Extensive experiments on the KITTI, Make3D and NYU-V2 datasets demonstrate that RA-Depth not only achieves state-of-the-art performance, but also exhibits a good ability of resolution adaptation.

Nowadays robots play an increasingly important role in our daily life. In human-centered environments, robots often encounter piles of objects, packed items, or isolated objects. Therefore, a robot must be able to grasp and manipulate different objects in various situations to help humans with daily tasks. In this paper, we propose a multi-view deep learning approach to handle robust object grasping in human-centric domains. In particular, our approach takes a point cloud of an arbitrary object as an input, and then, generates orthographic views of the given object. The obtained views are finally used to estimate pixel-wise grasp synthesis for each object. We train the model end-to-end using a small object grasp dataset and test it on both simulations and real-world data without any further fine-tuning. To evaluate the performance of the proposed approach, we performed extensive sets of experiments in three scenarios, including isolated objects, packed items, and pile of objects. Experimental results show that our approach performed very well in all simulation and real-robot scenarios, and is able to achieve reliable closed-loop grasping of novel objects across various scene configurations.

This paper studies category-level object pose estimation based on a single monocular image. Recent advances in pose-aware generative models have paved the way for addressing this challenging task using analysis-by-synthesis. The idea is to sequentially update a set of latent variables, e.g., pose, shape, and appearance, of the generative model until the generated image best agrees with the observation. However, convergence and efficiency are two challenges of this inference procedure. In this paper, we take a deeper look at the inference of analysis-by-synthesis from the perspective of visual navigation, and investigate what is a good navigation policy for this specific task. We evaluate three different strategies, including gradient descent, reinforcement learning and imitation learning, via thorough comparisons in terms of convergence, robustness and efficiency. Moreover, we show that a simple hybrid approach leads to an effective and efficient solution. We further compare these strategies to state-of-the-art methods, and demonstrate superior performance on synthetic and real-world datasets leveraging off-the-shelf pose-aware generative models.

Conventional self-supervised monocular depth prediction methods are based on a static environment assumption, which leads to accuracy degradation in dynamic scenes due to the mismatch and occlusion problems introduced by object motions. Existing dynamic-object-focused methods only partially solved the mismatch problem at the training loss level. In this paper, we accordingly propose a novel multi-frame monocular depth prediction method to solve these problems at both the prediction and supervision loss levels. Our method, called DynamicDepth, is a new framework trained via a self-supervised cycle consistent learning scheme. A Dynamic Object Motion Disentanglement (DOMD) module is proposed to disentangle object motions to solve the mismatch problem. Moreover, novel occlusion-aware Cost Volume and Re-projection Loss are designed to alleviate the occlusion effects of object motions. Extensive analyses and experiments on the Cityscapes and KITTI datasets show that our method significantly outperforms the state-of-the-art monocular depth prediction methods, especially in the areas of dynamic objects. Code is available at //github.com/AutoAILab/DynamicDepth

Monocular 3D detection has drawn much attention from the community due to its low cost and setup simplicity. It takes an RGB image as input and predicts 3D boxes in the 3D space. The most challenging sub-task lies in the instance depth estimation. Previous works usually use a direct estimation method. However, in this paper we point out that the instance depth on the RGB image is non-intuitive. It is coupled by visual depth clues and instance attribute clues, making it hard to be directly learned in the network. Therefore, we propose to reformulate the instance depth to the combination of the instance visual surface depth (visual depth) and the instance attribute depth (attribute depth). The visual depth is related to objects' appearances and positions on the image. By contrast, the attribute depth relies on objects' inherent attributes, which are invariant to the object affine transformation on the image. Correspondingly, we decouple the 3D location uncertainty into visual depth uncertainty and attribute depth uncertainty. By combining different types of depths and associated uncertainties, we can obtain the final instance depth. Furthermore, data augmentation in monocular 3D detection is usually limited due to the physical nature, hindering the boost of performance. Based on the proposed instance depth disentanglement strategy, we can alleviate this problem. Evaluated on KITTI, our method achieves new state-of-the-art results, and extensive ablation studies validate the effectiveness of each component in our method. The codes are released at //github.com/SPengLiang/DID-M3D.

Prototype Generation (PG) methods are typically considered for improving the efficiency of the $k$-Nearest Neighbour ($k$NN) classifier when tackling high-size corpora. Such approaches aim at generating a reduced version of the corpus without decreasing the classification performance when compared to the initial set. Despite their large application in multiclass scenarios, very few works have addressed the proposal of PG methods for the multilabel space. In this regard, this work presents the novel adaptation of four multiclass PG strategies to the multilabel case. These proposals are evaluated with three multilabel $k$NN-based classifiers, 12 corpora comprising a varied range of domains and corpus sizes, and different noise scenarios artificially induced in the data. The results obtained show that the proposed adaptations are capable of significantly improving -- both in terms of efficiency and classification performance -- the only reference multilabel PG work in the literature as well as the case in which no PG method is applied, also presenting a statistically superior robustness in noisy scenarios. Moreover, these novel PG strategies allow prioritising either the efficiency or efficacy criteria through its configuration depending on the target scenario, hence covering a wide area in the solution space not previously filled by other works.

In this paper, we propose an iterative self-training framework for sim-to-real 6D object pose estimation to facilitate cost-effective robotic grasping. Given a bin-picking scenario, we establish a photo-realistic simulator to synthesize abundant virtual data, and use this to train an initial pose estimation network. This network then takes the role of a teacher model, which generates pose predictions for unlabeled real data. With these predictions, we further design a comprehensive adaptive selection scheme to distinguish reliable results, and leverage them as pseudo labels to update a student model for pose estimation on real data. To continuously improve the quality of pseudo labels, we iterate the above steps by taking the trained student model as a new teacher and re-label real data using the refined teacher model. We evaluate our method on a public benchmark and our newly-released dataset, achieving an ADD(-S) improvement of 11.49% and 22.62% respectively. Our method is also able to improve robotic bin-picking success by 19.54%, demonstrating the potential of iterative sim-to-real solutions for robotic applications.

Human pose estimation aims to locate the human body parts and build human body representation (e.g., body skeleton) from input data such as images and videos. It has drawn increasing attention during the past decade and has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality. Although the recently developed deep learning-based solutions have achieved high performance in human pose estimation, there still remain challenges due to insufficient training data, depth ambiguities, and occlusions. The goal of this survey paper is to provide a comprehensive review of recent deep learning-based solutions for both 2D and 3D pose estimation via a systematic analysis and comparison of these solutions based on their input data and inference procedures. More than 240 research papers since 2014 are covered in this survey. Furthermore, 2D and 3D human pose estimation datasets and evaluation metrics are included. Quantitative performance comparisons of the reviewed methods on popular datasets are summarized and discussed. Finally, the challenges involved, applications, and future research directions are concluded. We also provide a regularly updated project page on: \url{//github.com/zczcwh/DL-HPE}

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

We present a monocular Simultaneous Localization and Mapping (SLAM) using high level object and plane landmarks, in addition to points. The resulting map is denser, more compact and meaningful compared to point only SLAM. We first propose a high order graphical model to jointly infer the 3D object and layout planes from single image considering occlusions and semantic constraints. The extracted cuboid object and layout planes are further optimized in a unified SLAM framework. Objects and planes can provide more semantic constraints such as Manhattan and object supporting relationships compared to points. Experiments on various public and collected datasets including ICL NUIM and TUM mono show that our algorithm can improve camera localization accuracy compared to state-of-the-art SLAM and also generate dense maps in many structured environments.

北京阿比特科技有限公司