Spurious measurements in surface data are common in technical surfaces. Excluding or ignoring these spurious points may lead to incorrect surface characterization if these points inherit features of the surface. Therefore, data imputation must be applied to ensure that the estimated data points at spurious measurements do not strongly deviate from the true surface and its characteristics. Traditional surface data imputation methods rely on simple assumptions and ignore existing knowledge of the surface, yielding in suboptimal estimates. In this paper, we propose using stochastic processes for data imputation. This approach, which originates from surface simulation, allows for the straightforward integration of a priori knowledge. We employ Gaussian processes for surface data imputation with artificially generated missing features. Both the surfaces and the missing features are generated artificially. Our results demonstrate that the proposed method fills the missing values and interpolates data points with better alignment to the measured surface compared to traditional approaches, particularly when surface features are missing.
Ideally, all analyses of normally distributed data should include the full covariance information between all data points. In practice, the full covariance matrix between all data points is not always available. Either because a result was published without a covariance matrix, or because one tries to combine multiple results from separate publications. For simple hypothesis tests, it is possible to define robust test statistics that will behave conservatively in the presence on unknown correlations. For model parameter fits, one can inflate the variance by a factor to ensure that things remain conservative at least up to a chosen confidence level. This paper describes a class of robust test statistics for simple hypothesis tests, as well as an algorithm to determine the necessary inflation factor for model parameter fits and Goodness of Fit tests and composite hypothesis tests. It then presents some example applications of the methods to real neutrino interaction data and model comparisons.
Delay Tolerant Networking (DTN) aims to address a myriad of significant networking challenges that appear in time-varying settings, such as mobile and satellite networks, wherein changes in network topology are frequent and often subject to environmental constraints. Within this paradigm, routing problems are often solved by extending classical graph-theoretic path finding algorithms, such as the Bellman-Ford or Floyd-Warshall algorithms, to the time-varying setting; such extensions are simple to understand, but they have strict optimality criteria and can exhibit non-polynomial scaling. Acknowledging this, we study time-varying shortest path problems on metric graphs whose vertices are traced by semi-algebraic curves. As an exemplary application, we establish a polynomial upper bound on the number of topological critical events encountered by a set of $n$ satellites moving along elliptic curves in low Earth orbit (per orbital period). Experimental evaluations on networks derived from STARLINK satellite TLE's demonstrate that not only does this geometric framework allow for routing schemes between satellites requiring recomputation an order of magnitude less than graph-based methods, but it also demonstrates metric spanner properties exist in metric graphs derived from real-world data, opening the door for broader applications of geometric DTN routing.
This chapter presents specific aspects of Gaussian process modeling in the presence of complex noise. Starting from the standard homoscedastic model, various generalizations from the literature are presented: input varying noise variance, non-Gaussian noise, or quantile modeling. These approaches are compared in terms of goal, data availability and inference procedure. A distinction is made between methods depending on their handling of repeated observations at the same location, also called replication. The chapter concludes with the corresponding adaptations of the sequential design procedures. These are illustrated in an example from epidemiology.
Data scarcity and data imbalance have attracted a lot of attention in many fields. Data augmentation, explored as an effective approach to tackle them, can improve the robustness and efficiency of classification models by generating new samples. This paper presents REPRINT, a simple and effective hidden-space data augmentation method for imbalanced data classification. Given hidden-space representations of samples in each class, REPRINT extrapolates, in a randomized fashion, augmented examples for target class by using subspaces spanned by principal components to summarize distribution structure of both source and target class. Consequently, the examples generated would diversify the target while maintaining the original geometry of target distribution. Besides, this method involves a label refinement component which allows to synthesize new soft labels for augmented examples. Compared with different NLP data augmentation approaches under a range of data imbalanced scenarios on four text classification benchmark, REPRINT shows prominent improvements. Moreover, through comprehensive ablation studies, we show that label refinement is better than label-preserving for augmented examples, and that our method suggests stable and consistent improvements in terms of suitable choices of principal components. Moreover, REPRINT is appealing for its easy-to-use since it contains only one hyperparameter determining the dimension of subspace and requires low computational resource.
Tipping points occur in many real-world systems, at which the system shifts suddenly from one state to another. The ability to predict the occurrence of tipping points from time series data remains an outstanding challenge and a major interest in a broad range of research fields. Particularly, the widely used methods based on bifurcation theory are neither reliable in prediction accuracy nor applicable for irregularly-sampled time series which are commonly observed from real-world systems. Here we address this challenge by developing a deep learning algorithm for predicting the occurrence of tipping points in untrained systems, by exploiting information about normal forms. Our algorithm not only outperforms traditional methods for regularly-sampled model time series but also achieves accurate predictions for irregularly-sampled model time series and empirical time series. Our ability to predict tipping points for complex systems paves the way for mitigation risks, prevention of catastrophic failures, and restoration of degraded systems, with broad applications in social science, engineering, and biology.
We present weak approximations schemes of any order for the Heston model that are obtained by using the method developed by Alfonsi and Bally (2021). This method consists in combining approximation schemes calculated on different random grids to increase the order of convergence. We apply this method with either the Ninomiya-Victoir scheme (2008) or a second-order scheme that samples exactly the volatility component, and we show rigorously that we can achieve then any order of convergence. We give numerical illustrations on financial examples that validate the theoretical order of convergence. We also present promising numerical results for the multifactor/rough Heston model and hint at applications to other models, including the Bates model and the double Heston model.
Multidimensional quaternion arrays (often referred to as "quaternion tensors") and their decompositions have recently gained increasing attention in various fields such as color and polarimetric imaging or video processing. Despite this growing interest, the theoretical development of quaternion tensors remains limited. This paper introduces a novel multilinear framework for quaternion arrays, which extends the classical tensor analysis to multidimensional quaternion data in a rigorous manner. Specifically, we propose a new definition of quaternion tensors as $\mathbb{H}\mathbb{R}$-multilinear forms, addressing the challenges posed by the non-commutativity of quaternion multiplication. Within this framework, we establish the Tucker decomposition for quaternion tensors and develop a quaternion Canonical Polyadic Decomposition (Q-CPD). We thoroughly investigate the properties of the Q-CPD, including trivial ambiguities, complex equivalent models, and sufficient conditions for uniqueness. Additionally, we present two algorithms for computing the Q-CPD and demonstrate their effectiveness through numerical experiments. Our results provide a solid theoretical foundation for further research on quaternion tensor decompositions and offer new computational tools for practitioners working with quaternion multiway data.
Generative modeling for tabular data has recently gained significant attention in the Deep Learning domain. Its objective is to estimate the underlying distribution of the data. However, estimating the underlying distribution of tabular data has its unique challenges. Specifically, this data modality is composed of mixed types of features, making it a non-trivial task for a model to learn intra-relationships between them. One approach to address mixture is to embed each feature into a continuous matrix via tokenization, while a solution to capture intra-relationships between variables is via the transformer architecture. In this work, we empirically investigate the potential of using embedding representations on tabular data generation, utilizing tensor contraction layers and transformers to model the underlying distribution of tabular data within Variational Autoencoders. Specifically, we compare four architectural approaches: a baseline VAE model, two variants that focus on tensor contraction layers and transformers respectively, and a hybrid model that integrates both techniques. Our empirical study, conducted across multiple datasets from the OpenML CC18 suite, compares models over density estimation and Machine Learning efficiency metrics. The main takeaway from our results is that leveraging embedding representations with the help of tensor contraction layers improves density estimation metrics, albeit maintaining competitive performance in terms of machine learning efficiency.
Artificial intelligence (AI) systems capable of generating creative outputs are reshaping our understanding of creativity. This shift presents an opportunity for creativity researchers to reevaluate the key components of the creative process. In particular, the advanced capabilities of AI underscore the importance of studying the internal processes of creativity. This paper explores the neurobiological machinery that underlies these internal processes and describes the experiential component of creativity. It is concluded that although the products of artificial and human creativity can be similar, the internal processes are different. The paper also discusses how AI may negatively affect the internal processes of human creativity, such as the development of skills, the integration of knowledge, and the diversity of ideas.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.