亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a new rule-based optimization method for classification with constraints. The proposed method takes advantage of linear programming and column generation, and hence, is scalable to large datasets. Moreover, the method returns a set of rules along with their optimal weights indicating the importance of each rule for learning. Through assigning cost coefficients to the rules and introducing additional constraints, we show that one can also consider interpretability and fairness of the results. We test the performance of the proposed method on a collection of datasets and present two case studies to elaborate its different aspects. Our results show that a good compromise between interpretability and fairness on the one side, and accuracy on the other side, can be obtained by the proposed rule-based learning method.

相關內容

The detection and classification of vehicles on the road is a crucial task for traffic monitoring. Usually, Computer Vision (CV) algorithms dominate the task of vehicle classification on the road, but CV methodologies might suffer in poor lighting conditions and require greater amounts of computational power. Additionally, there is a privacy concern with installing cameras in sensitive and secure areas. In contrast, acoustic traffic monitoring is cost-effective, and can provide greater accuracy, particularly in low lighting conditions and in places where cameras cannot be installed. In this paper, we consider the task of acoustic vehicle sub-type classification, where we classify acoustic signals into 4 classes: car, truck, bike, and no vehicle. We experimented with Mel spectrograms, MFCC and GFCC as features and performed data pre-processing to train a simple, well optimized CNN that performs well at the task. When used with MFCC as features and careful data pre-processing, our proposed methodology improves upon the established state-of-the-art baseline on the IDMT Traffic dataset with an accuracy of 98.95%.

Despite the state-of-the-art performance of deep convolutional neural networks, they are susceptible to bias and malfunction in unseen situations. The complex computation behind their reasoning is not sufficiently human-understandable to develop trust. External explainer methods have tried to interpret the network decisions in a human-understandable way, but they are accused of fallacies due to their assumptions and simplifications. On the other side, the inherent self-interpretability of models, while being more robust to the mentioned fallacies, cannot be applied to the already trained models. In this work, we propose a new attention-based pooling layer, called Local Attention Pooling (LAP), that accomplishes self-interpretability and the possibility for knowledge injection while improving the model's performance. Moreover, several weakly-supervised knowledge injection methodologies are provided to enhance the process of training. We verified our claims by evaluating several LAP-extended models on three different datasets, including Imagenet. The proposed framework offers more valid human-understandable and more faithful-to-the-model interpretations than the commonly used white-box explainer methods.

Recent advances in deep learning have led to the development of models approaching the human level of accuracy. However, healthcare remains an area lacking in widespread adoption. The safety-critical nature of healthcare results in a natural reticence to put these black-box deep learning models into practice. This paper explores interpretable methods for a clinical decision support system called sleep staging, an essential step in diagnosing sleep disorders. Clinical sleep staging is an arduous process requiring manual annotation for each 30s of sleep using physiological signals such as electroencephalogram (EEG). Recent work has shown that sleep staging using simple models and an exhaustive set of features can perform nearly as well as deep learning approaches but only for some specific datasets. Moreover, the utility of those features from a clinical standpoint is ambiguous. On the other hand, the proposed framework, NormIntSleep demonstrates exceptional performance across different datasets by representing deep learning embeddings using normalized features. NormIntSleep performs 4.5% better than the exhaustive feature-based approach and 1.5% better than other representation learning approaches. An empirical comparison between the utility of the interpretations of these models highlights the improved alignment with clinical expectations when performance is traded-off slightly. NormIntSleep paired with a clinically meaningful set of features can best balance this trade-off by providing reliable, clinically relevant interpretation with robust performance.

The best empirical research in political science clearly defines substantive parameters of interest, presents a set of assumptions that guarantee its identification, and uses an appropriate estimator. We argue for the importance of explicitly integrating rigorous theory into this process and focus on the advantages of doing so. By integrating theoretical structure into one's empirical strategy, researchers can quantify the effects of competing mechanisms, consider the ex-ante effects of new policies, extrapolate findings to new environments, estimate model-specific theoretical parameters, evaluate the fit of a theoretical model, and test competing models that aim to explain the same phenomena. As a guide to such a methodology, we provide an overview of structural estimation, including formal definitions, implementation suggestions, examples, and comparisons to other methods.

We present a method of explainable artificial intelligence (XAI), "What I Know (WIK)", to provide additional information to verify the reliability of a deep learning model by showing an example of an instance in a training dataset that is similar to the input data to be inferred and demonstrate it in a remote sensing image classification task. One of the expected roles of XAI methods is verifying whether inferences of a trained machine learning model are valid for an application, and it is an important factor that what datasets are used for training the model as well as the model architecture. Our data-centric approach can help determine whether the training dataset is sufficient for each inference by checking the selected example data. If the selected example looks similar to the input data, we can confirm that the model was not trained on a dataset with a feature distribution far from the feature of the input data. With this method, the criteria for selecting an example are not merely data similarity with the input data but also data similarity in the context of the model task. Using a remote sensing image dataset from the Sentinel-2 satellite, the concept was successfully demonstrated with reasonably selected examples. This method can be applied to various machine-learning tasks, including classification and regression.

Modern deep learning systems are increasingly deployed in situations such as personalization and federated learning where it is necessary to support i) learning on small amounts of data, and ii) communication efficient distributed training protocols. In this work, we develop FiLM Transfer (FiT) which fulfills these requirements in the image classification setting by combining ideas from transfer learning (fixed pretrained backbones and fine-tuned FiLM adapter layers) and meta-learning (automatically configured Naive Bayes classifiers and episodic training) to yield parameter efficient models with superior classification accuracy at low-shot. The resulting parameter efficiency is key for enabling few-shot learning, inexpensive model updates for personalization, and communication efficient federated learning. We experiment with FiT on a wide range of downstream datasets and show that it achieves better classification accuracy than the leading Big Transfer (BiT) algorithm at low-shot and achieves state-of-the art accuracy on the challenging VTAB-1k benchmark, with fewer than 1% of the updateable parameters. Finally, we demonstrate the parameter efficiency and superior accuracy of FiT in distributed low-shot applications including model personalization and federated learning where model update size is an important performance metric.

This paper proposes a generic method to learn interpretable convolutional filters in a deep convolutional neural network (CNN) for object classification, where each interpretable filter encodes features of a specific object part. Our method does not require additional annotations of object parts or textures for supervision. Instead, we use the same training data as traditional CNNs. Our method automatically assigns each interpretable filter in a high conv-layer with an object part of a certain category during the learning process. Such explicit knowledge representations in conv-layers of CNN help people clarify the logic encoded in the CNN, i.e., answering what patterns the CNN extracts from an input image and uses for prediction. We have tested our method using different benchmark CNNs with various structures to demonstrate the broad applicability of our method. Experiments have shown that our interpretable filters are much more semantically meaningful than traditional filters.

Text Classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a limited number of studies have explored the more flexible graph convolutional neural networks (e.g., convolution on non-grid, e.g., arbitrary graph) for the task. In this work, we propose to use graph convolutional networks for text classification. We build a single text graph for a corpus based on word co-occurrence and document word relations, then learn a Text Graph Convolutional Network (Text GCN) for the corpus. Our Text GCN is initialized with one-hot representation for word and document, it then jointly learns the embeddings for both words and documents, as supervised by the known class labels for documents. Our experimental results on multiple benchmark datasets demonstrate that a vanilla Text GCN without any external word embeddings or knowledge outperforms state-of-the-art methods for text classification. On the other hand, Text GCN also learns predictive word and document embeddings. In addition, experimental results show that the improvement of Text GCN over state-of-the-art comparison methods become more prominent as we lower the percentage of training data, suggesting the robustness of Text GCN to less training data in text classification.

The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司